A375181 Inverse binomial transform of A376277.
1, 1, 2, 3, 6, 12, 28, 70, 189, 533, 1551, 4599, 13807, 41784, 127144, 388373, 1189661, 3651910, 11228851, 34571914, 106555917, 328713138, 1014797705, 3134841053, 9689148780, 29961083746, 92683964271, 286816872102, 887849075464, 2749110140301, 8514323952447
Offset: 0
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec((2*x^2-sqrt(-3*x^2-2*x+1)+3*x-1)/(-5*x^3+sqrt(-3*x^2-2*x+1)*(x^2+x-1)+4*x-1))
Formula
G.f.: 1/(1-1*x/(1-1*x/(1+1*x/(1+1*x/(1-3*x/(1-(1/3)*x/(1-(2/3)*x/(1-(3/2)*x/(1+(1/2)*x/(...)))))))))), a continued fraction expansion. The coefficients of x are {-1, -1, 1, 1, -3, -(1/3), -(2/3), -(3/2), (1/2), 2, -3, ...}. The numerators will repeat {1, 2, 3} the denominators {1, 1, 2, 2, 3, 3} the sign repeats {-,-,-,-,+,+}.
G.f.: (2*x^2 - sqrt(-3*x^2 - 2*x + 1) + 3*x - 1)/(-5*x^3 + sqrt(-3*x^2 - 2*x + 1)*(x^2 + x - 1) + 4*x - 1)
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A376277(k).
D-finite with recurrence (-n+3)*a(n) +(7*n-25)*a(n-1) +2*(-6*n+25)*a(n-2) +10*(-n+4)*a(n-3) +2*(16*n-73)*a(n-4) +(n-5)*a(n-5) +21*(-n+5)*a(n-6)=0. - R. J. Mathar, Oct 24 2024
Comments