A062224
Numbers k such that the smoothly undulating palindromic number (75*10^k - 57)/99 is a prime.
Original entry on oeis.org
3, 17, 77, 143, 149, 513, 1079, 1415, 6249, 13265, 14579, 15293, 41657, 72941
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=17 -> (75*10^17 - 57)/99 = 75757575757575757.
A062225
Numbers k such that the smoothly undulating palindromic number (78*10^k - 87)/99 is a prime.
Original entry on oeis.org
3, 5, 21, 27, 95, 2075, 2165, 3047, 3503, 16791, 34883
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=21 -> (78*10^21 - 87)/99 = 787878787878787878787.
A062226
Numbers k such that the smoothly undulating palindromic number (79*10^k - 97)/99 is a prime.
Original entry on oeis.org
3, 357, 537, 1677, 3057, 51663, 66447
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=357 -> (79*10^357 - 97)/99 = 7979797...7979797.
A062227
Numbers k such that the smoothly undulating palindromic number (91*10^k - 19)/99 is a prime.
Original entry on oeis.org
3, 9, 11, 17, 23, 25229
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=23 -> (91*10^23 - 19)/99 = 91919191919191919191919.
A062228
Numbers k such that the smoothly undulating palindromic number (92*10^k - 29)/99 is a prime.
Original entry on oeis.org
3, 9, 195, 515, 857, 11393
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=9 -> (92*10^9 - 29)/99 = 929292929.
A062229
Numbers k such that the smoothly undulating palindromic number (94*10^k - 49)/99 is a prime.
Original entry on oeis.org
5, 17, 65, 143, 551, 92981
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=17 -> (94*10^17 - 49)/99 = 94949494949494949.
A062230
Numbers k such that the smoothly undulating palindromic number (95*10^k - 59)/99 is a prime.
Original entry on oeis.org
5, 17, 209, 1295
Offset: 1
Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001
k=17 -> (95*10^17 - 59)/99 = 95959595959595959.
A085112
Palindromic primes with at least 3 digits in which the absolute difference of successive digits is identical.
Original entry on oeis.org
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 14741, 18181, 32323, 34543, 35353, 35753, 72727, 74747, 78787, 94949, 95959, 97579, 1212121, 1616161, 3135313, 3212123, 7654567, 159595951, 323232323, 345656543
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 04 2003
94949 is a member with the difference between every pair of successive digits = 5.
34543 is also a member with the absolute difference 1.
Comments