A062640 Numbers k such that 74^k - 73^k is prime.
23, 193, 811
Offset: 1
Programs
-
PARI
is(n)=ispseudoprime(74^n-73^n) \\ Charles R Greathouse IV, Jun 13 2017
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
is(n)=ispseudoprime(74^n-73^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(75^n-74^n) \\ Charles R Greathouse IV, Jun 13 2017
Select[Range[450],PrimeQ[76^#-75^#]&] (* Harvey P. Dale, Aug 30 2013 *)
is(n)=ispseudoprime(76^n-75^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(77^n-76^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(78^n-77^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(79^n-78^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(80^n-79^n) \\ Charles R Greathouse IV, Jun 13 2017
Select[Range[1000], PrimeQ[82^# - 81^#] &] (* Robert Price, Jan 28 2015 *)
is(n)=ispseudoprime(82^n-81^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(84^n-83^n) \\ Charles R Greathouse IV, Jun 13 2017
is(n)=ispseudoprime(85^n-84^n) \\ Charles R Greathouse IV, Jun 13 2017
Comments