cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 122 results. Next

A215487 Numbers k such that (7^k - 2^k)/5 is prime.

Original entry on oeis.org

3, 7, 19, 79, 431, 1373, 1801, 2897, 46997, 341063, 508867, 720497, 846913
Offset: 1

Views

Author

Robert Price, Aug 12 2012

Keywords

Comments

All terms are prime.
a(14) > 10^6.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 300] ], PrimeQ[ (7^# - 2^#)/5 ]& ]
  • PARI
    is(n)=ispseudoprime((7^n-2^n)/5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(10)-a(13) from Jon Grantham, Jul 29 2023

A224691 Numbers n such that (13^n - 4^n)/9 is prime.

Original entry on oeis.org

2, 5, 19, 109, 157, 8521, 26017, 26177
Offset: 1

Views

Author

Robert Price, Apr 15 2013

Keywords

Comments

All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(13^# - 4^#)/9]&]
  • PARI
    is(n)=ispseudoprime((13^n-4^n)/9) \\ Charles R Greathouse IV, Jun 13 2017

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A286348 Numbers n such that 4^n + (-3)^n is prime.

Original entry on oeis.org

0, 3, 4, 7, 16, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 07 2017

Keywords

Comments

Numbers n such that (1 + k)^n + (-k)^n is prime:
0 (k = 0);
A285929 (k = 1);
A283653 (k = 2);
this sequence (k = 3);
0, 2, 3, 4, 43, 59, 191, 223, ... (k = 4);
0, 2, 5, 8, 11, 13, 16, 23, 61, 83, ...(k = 5);
0, 3, 4, 7, 16, 29, 41, 67, ... (k = 6);
0, 2, 7, 11, 16, 17, 29, 31, 79, 43, 131, 139, ... (k = 7);
0, 4, 7, 29, 31, 32, 67, ... (k = 8);
0, 2, 3, 4, 7, 11, 19, 29, ... (k = 9);
0, 3, 5, 19, 32, ... (k = 10);
0, 3, 7, 89, 101, ... (k = 11);
0, 2, 4, 17, 31, 32, 41, 47, 109, 163, ... (k = 12);
0, 3, 4, 11, 83, ... (k = 13);
0, 2, 3, 4, 16, 43, 173, 193, ... (k = 14);
0, 43, ... (k = 15);
0, 4, 5, 7, 79, ... (k = 16);
0, 2, 3, 8, 13, 71, ... (k = 17);
0, 1607, ... (k = 18);
...
Primes of the form (1 + n)^(2^n) + n: 5, 83, 65539, 7958661109946400884391941, ...
Numbers m such that (1 + k)^m + (-k)^m is not odd prime for k =< m: 0, 1, 15, 18, 53, 59, 106, 114, 124, 132, 133, 143, 177, 214, 232, 234, 240, 256, ...
Conjecture: if (1 + y)^x + (-y)^x is a prime number then x is zero, or an even power of two, or an odd prime number.

Examples

			3 is in this sequence because 4^3 + (-3)^3 = 37 is prime.
4 is in this sequence because 4^4 + (-3)^4 = 337 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..250] | IsPrime(4^n+(-3)^n)];
    
  • Mathematica
    Select[Range[0, 3000], PrimeQ[4^# + (-3)^#] &] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    is(n)=ispseudoprime(4^n+(-3)^n) \\ Charles R Greathouse IV, Jun 13 2017

A062580 Numbers k such that 14^k - 13^k is prime.

Original entry on oeis.org

3, 11, 83, 461, 659, 1129, 3797, 83869
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms greater than 1000 may correspond to (unproven) strong pseudoprimes.

Crossrefs

Programs

Extensions

83869 found from Jean-Louis Charton, Sep 02 2009
Edited by M. F. Hasler, Sep 16 2013

A062594 Numbers k such that 28^k - 27^k is prime.

Original entry on oeis.org

3, 5, 19, 31, 257, 773
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms > 1000 are often only strong pseudoprimes.
a(7) > 10^5. - Robert Price, Sep 04 2012

Crossrefs

Programs

A062595 Numbers k such that 29^k - 28^k is prime.

Original entry on oeis.org

3, 7219, 34871
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms > 1000 are often only strong pseudoprimes.
a(4) > 10^5. - Robert Price, Sep 22 2012

Crossrefs

Programs

Extensions

a(3) from Robert Price, Sep 22 2012

A062596 Numbers k such that 30^k - 29^k is prime.

Original entry on oeis.org

2, 149, 283, 853, 1741, 4831, 8867
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms > 1000 are often only strong pseudoprimes.
a(8) > 10^5. - Robert Price, Oct 23 2012

Crossrefs

Programs

A062597 Numbers k such that 31^k - 30^k is prime.

Original entry on oeis.org

2, 3, 5, 211
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms > 1000 are often only strong pseudoprimes.
a(5) > 10^5 - Robert Price, Nov 14 2012

Crossrefs

Programs

A062598 Numbers k such that 32^k - 31^k is prime.

Original entry on oeis.org

5, 1427, 2357, 24499
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms > 1000 often correspond only to strong pseudoprimes.
a(5) > 10^5. - Robert Price, Oct 03 2012

Crossrefs

Programs

Extensions

a(4) from Robert Price, Oct 03 2012
Previous Showing 61-70 of 122 results. Next