cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A327440 a(n) = floor(3*n/10).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23
Offset: 0

Views

Author

Bruno Berselli, Sep 11 2019

Keywords

Comments

The sequence can be obtained from A008585 by deleting the last digit of each term.

Crossrefs

Cf. A008585.
Similar sequences with the formula floor(k*n/10): A059995 (k=1); A002266 (k=2); A057354 (k=4); A004526 (k=5); A057355 (k=6); A188511 (k=7); A090223 (k=8).

Programs

  • Julia
    [div(3*n, 10) for n in 0:80] |> println
    
  • Mathematica
    Table[Floor[3 n/10], {n, 0, 80}]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3}, 80]
  • PARI
    vector(80, n, n--; floor(3*n/10))

Formula

O.g.f.: x^4*(1 + x^3 + x^6)/((1 + x)*(1 - x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) = (x^4 + x^7 + x^10)/(1 - x - x^10 + x^11).
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10.

A329809 Numbers k such that floor(k/10)^(k mod 10) contains the digit (k mod 10).

Original entry on oeis.org

11, 26, 37, 39, 46, 52, 55, 56, 57, 59, 66, 67, 69, 73, 74, 76, 78, 84, 86, 87, 95, 97, 99, 101, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 128, 129, 131, 136, 137, 138, 139, 141, 144, 145, 146, 148, 151, 152, 153, 155, 156, 157, 158, 159, 161, 162, 165, 166, 169, 171, 172, 173, 175
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Nov 21 2019

Keywords

Comments

Or: Numbers k such that A059995(k)^A010879(k) contains the last digit of k, A010879(k).
It's easy to see that all numbers ending in {11, 37, 46, 52, 55, 59, 66, 69, 73, 97, 99} are in the sequence: for these, A059995(k)^A010879(k) mod 100 = (1, 87, 96, 25, 25, 25, 56, 96, 43, 69, 89).

Crossrefs

Cf. A059995 (floor(n/10): drop final digit), A010879 (n mod 10; final digit of n).

Programs

  • PARI
    select( t->setsearch(Set(digits((t\10)^(t%10))),t%10),[0..9999])

A342112 Drop the final digit of n^5.

Original entry on oeis.org

0, 0, 3, 24, 102, 312, 777, 1680, 3276, 5904, 10000, 16105, 24883, 37129, 53782, 75937, 104857, 141985, 188956, 247609, 320000, 408410, 515363, 643634, 796262, 976562, 1188137, 1434890, 1721036, 2051114, 2430000, 2862915, 3355443, 3913539, 4543542, 5252187, 6046617
Offset: 0

Views

Author

Stefano Spezia, Feb 28 2021

Keywords

Comments

Why exponent 5? Because it is the smallest nontrivial exponent e such that for an integer k not ending in 0, 1, 5 and 6, k^e has the same unit digit of k in base 10.

Crossrefs

Programs

  • Mathematica
    Table[(n^5-Last[IntegerDigits[n]])/10,{n,0,36}]

Formula

G.f.: x^2*(3 + 9*x + 12*x^2 + 12*x^3 + 12*x^4 + 12*x^5 + 12*x^6 + 12*x^7 + 13*x^8 + 8*x^9 + 15*x^10 - x^11 + x^12)/((1 - x)^6*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + a(n-10) - 5*a(n-11) + 10*a(n-12) - 10*a(n-13) + 5*a(n-14) - a(n-15) for n > 14.
a(n) = floor(n^5/10).
a(n) = (A000584(n) - A010879(n))/10.
a(n) = A164938(n) + A059995(n).
Previous Showing 21-23 of 23 results.