cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-75 of 75 results.

A276276 a(n) = a(n-2)+a(n-3) with a(1)=2 a(2)=1 a(3)=0.

Original entry on oeis.org

2, 1, 0, 3, 1, 3, 4, 4, 7, 8, 11, 15, 19, 26, 34, 45, 60, 79, 105, 139, 184, 244, 323, 428, 567, 751, 995, 1318, 1746, 2313, 3064, 4059, 5377, 7123, 9436, 12500, 16559, 21936, 29059, 38495, 50995, 67554, 89490
Offset: 1

Views

Author

Nicolas Bègue, Aug 26 2016

Keywords

Comments

Sequence is obtained from modulo 3 periodic sequence of Padovan numbers 1112201210010, it satisfies the same recurrence a(n) = a(n-2) + a(n-3).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 2] + a[n - 3], a[1] == 2, a[2] == 1, a[3] == 0}, a, {n, 1, 43}] (* or *)
    CoefficientList[Series[(2 x^2 - x - 2)/(x^3 + x^2 - 1), {x, 0, 42}], x] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,0]^(n-1)*[2;1;0])[1,1] \\ Charles R Greathouse IV, Aug 28 2016

Formula

G.f.: (2x^2-x-2)/(x^3+x^2-1).
a(n) = A000931(n) - A000931(n-9), for n>2.

Extensions

More terms from Charles R Greathouse IV, Aug 28 2016

A278766 Engel expansion of plastic constant (real root of x^3 - x - 1).

Original entry on oeis.org

1, 4, 4, 6, 6, 27, 74, 86, 372, 853, 947, 1475, 3686, 9084, 19174, 30737, 1530833, 2401466, 2521253, 3649563, 3802245, 9320024, 1092256819, 2114664794, 2878948610, 8842525055, 13769551820, 26996892389, 215947176106, 269439735691, 13694290818678, 18312336654245, 19649485782723, 63266709043539
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Examples

			(1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.324717957244... = 1/1 + 1/(1*4) + 1/(1*4*4) + 1/(1*4*4*6) + 1/(1*4*4*6*6) + 1/(1*4*4*6*6*27) + ...
		

Crossrefs

Cf. A006784 (for definition of Engel expansion).

Programs

  • Mathematica
    EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[(1/2 + Sqrt[23/108])^(1/3) + (1/2 - Sqrt[23/108])^(1/3), 7! ], 40]

A301509 Decimal expansion of (1 + (1 + (1 + (1 + ...)^(1/5))^(1/4))^(1/3))^(1/2).

Original entry on oeis.org

1, 5, 1, 7, 6, 0, 0, 1, 6, 7, 8, 7, 7, 7, 1, 8, 8, 9, 1, 3, 7, 0, 6, 5, 8, 0, 4, 3, 0, 6, 3, 4, 1, 6, 2, 7, 1, 8, 8, 5, 1, 5, 7, 0, 0, 6, 7, 9, 1, 9, 7, 6, 0, 3, 3, 8, 6, 7, 7, 0, 4, 3, 0, 1, 4, 7, 2, 1, 3, 5, 2, 2, 5, 3, 2, 3, 5, 2, 2, 8, 2, 1, 1, 2, 1, 7, 7, 8, 5, 6, 1, 4, 5, 1, 3, 9, 3, 3, 8, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Examples

			1.517600167877718891370658043063416271885...
		

Crossrefs

A368205 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3), with a(0)=1, a(1)=3 and a(2)=7.

Original entry on oeis.org

1, 3, 7, 14, 25, 40, 56, 63, 37, -71, -350, -945, -2064, -3952, -6783, -10381, -13625, -13330, -2359, 33208, 117672, 288959, 598325, 1099385, 1812546, 2640543, 3197152, 2497824, -1541375, -12816925, -37865849, -86422322, -170718343, -301444536, -476474600, -655816385, -713055419, -351058887, 1028750562, 4501424879, 11797832400, 25361896880, 47988600961
Offset: 0

Views

Author

Raul Prisacariu, Dec 18 2023

Keywords

Comments

Whittaker's Root Series Formula is applied to the polynomial equation -1+2x+3x^2+x^3. The following infinite series involving the Plastic Ratio (rho) is obtained: rho - 1 = 1/2 - 3/(2*7) + 7/(7*21) - 14/(21*65) + 25/(65*200) - 40/(200*616) + 56/(616*1897) - ...
The terms of the sequence appear in the numerators of the infinite sequence (with alternating signs). The denominators of the sequence are formed by multiplying consecutive terms from the sequence A218836.

Examples

			a(0) = 1,
a(1) = 3*a(0) = 3*1 = 3,
a(2) = 3*a(1) - 2*a(0) = 3*3 - 2*1 = 7,
a(3) = 3*a(2) - 2*a(1) - a(0) = 3*7 - 2*3 - 1 = 14.
		

Crossrefs

Cf. A218836 (denominator), A060006.

Programs

  • Maple
    a:=proc(n) local c1,c2,c3;
     option remember;
    c1:=3; c2:=2; c3:=1;
    if n=0 then 1
    elif n=1 then 3
    elif n=2 then 7
    else c1*a(n-1)-c2*a(n-2)-c3*a(n-3); fi;
    end; # N. J. A. Sloane, Dec 31 2023
    [seq(a(n),n=0..30)];

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = determinant of the n X n Toeplitz Matrix((3,2,-1,0,0,...,0),(3,1,0,0,0,...,0)).

A372244 Decimal expansion of the maverick constant lambda^*.

Original entry on oeis.org

2, 0, 1, 9, 8, 0, 0, 8, 8, 7, 0, 9, 0, 4, 6, 7, 3, 3, 7, 4, 8, 7, 1, 7, 1, 1, 8, 2, 6, 5, 2, 4, 7, 3, 0, 8, 6, 1, 4, 4, 4, 2, 0, 3, 4, 3, 6, 3, 0, 6, 8, 4, 4, 7, 4, 2, 7, 2, 0, 0, 8, 2, 4, 3, 2, 6, 4, 5, 2, 6, 2, 2, 3, 4, 0, 8, 9, 5, 1, 2, 3, 1, 9, 1, 6, 8, 1
Offset: 1

Views

Author

Eric W. Weisstein, Apr 24 2024

Keywords

Examples

			2.019800887090467337...
		

Crossrefs

Cf. A060006 (decimal digits of the plastic constant).

Programs

  • Mathematica
    RealDigits[Root[-1 + 4 #^2 - 5 #^4 + #^6& , 2, 0], 10, 87][[1]]

Formula

lambda^* = rho^(1/2) + rho^(-1/2), where rho is the plastic constant with decimal digits A060006.
Previous Showing 71-75 of 75 results.