cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A350446 Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           1;
           3,          1;
          16,         11;
         125,        128,          3;
        1296,       1734,         95;
       16807,      27409,       2425,       15;
      262144,     499400,      61054,      945;
     4782969,   10346328,    1605534,    42280,    105;
   100000000,  240722160,   44981292,  1706012,  11025;
  2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
  ...
		

Crossrefs

Column k=0 gives A000272(n+1).
Row sums give A000312.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
    A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
    T[n_] :=  With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

From Mélika Tebni, Mar 23 2023: (Start)
E.g.f. of column k: (W(-x)-log(1 + W(-x)))^k / (exp(W(-x))*k!), W(x) the Lambert W-function.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1,j-1)*A136394(j,k), for n > 0.
T(n,k) = Sum_{j=k..n} (n-j+1)^(n-j-1)*binomial(n,j)*A350452(j,k).
Sum_{k=0..n/2} (k+1)*T(n,k) = A190314(n), for n > 0.
Sum_{k=0..n/2} 2^k*T(n,k) = A217701(n). (End)

A210661 The total number of ways to linearly order the connected components of each functional digraph over all functions f:{1,2,...,n}->{1,2,...,n}.

Original entry on oeis.org

1, 1, 5, 41, 464, 6679, 116534, 2387223, 56126216, 1488936405, 43981641232, 1431351648253, 50877935705904, 1960987188622955, 81454893191133968, 3627186997857749259, 172364960657294194944, 8705953783492490785801, 465732966748611591349632, 26305402198153236286685809, 1564288763576093814775234304
Offset: 0

Views

Author

Geoffrey Critzer, Mar 30 2012

Keywords

Comments

Sum_{k=1,2,...,n}:A060281(n,k)*k!

Programs

  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];a=Log[1/(1-t)];Range[0,nn]!CoefficientList[Series[1/(1-a),{x,0,nn}],x]

Formula

E.g.f.: 1/(1-log(1/(1-T(x)))) where T(x) is the e.g.f. for A000169.
a(n) ~ n! * exp((2*n*exp(1)-exp(1)-n)*exp(-1))/(exp(1)-1)^(n+1). - Vaclav Kotesovec, Sep 24 2013
Previous Showing 21-22 of 22 results.