cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A253214 Decimal expansion of log(640320^3)/sqrt(163), a Ramanujan constant producing 16 correct digits of Pi.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 0, 1, 6, 4, 9, 5, 8, 8, 8, 6, 5, 3, 1, 9, 6, 7, 2, 3, 7, 4, 6, 4, 0, 6, 8, 2, 4, 8, 8, 1, 4, 3, 8, 4, 4, 3, 9, 3, 9, 5, 8, 3, 7, 7, 3, 5, 6, 1, 9, 3, 6, 2, 8, 7, 0, 8, 6, 3, 8, 6, 2, 1, 8, 2, 6, 1, 6, 9, 8, 6, 0, 4, 9, 3, 7, 9, 0, 6, 7, 2, 3, 4, 9, 9, 5, 5, 6, 2
Offset: 1

Views

Author

Jean-François Alcover, Dec 29 2014

Keywords

Examples

			3.141592653589793|0164958886531967237464..., where | shows the position from where the digits differ.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[640320^3]/Sqrt[163], 10, 104] // First
  • PARI
    log(640320^3)/sqrt(163) \\ Charles R Greathouse IV, Apr 20 2016

A076303 Engel expansion of exp(Pi * sqrt(163)) - 262537412640768743.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 19, 1169, 21384, 520409, 2559029, 2922819, 3228884, 6972029, 18244654, 24601850, 146539491, 620041946, 865572355, 1298955860, 3005000777, 5169423076, 6941400197, 9965578146, 26183561695, 39614218376
Offset: 1

Views

Author

Robert G. Wilson v, Mar 03 2003

Keywords

Comments

262537412640768743.9999999999992500... is Ramanujan's constant which is extremely close to an integer. The Engel expansion of the fractional part begins with 40 terms 2.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1 &, Floor[ A ]], First@ Transpose @ NestList[ {Ceiling[ 1/Expand[ #[[ 1 ]] #[[ 2 ]] - 1 ]], Expand[ #[[ 1 ]] #[[ 2 ]] - 1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1 ]]; EngelExp[E^(Pi*Sqrt[163]) - 262537412640768743, 52]
  • PARI
    default(realprecision, 100000); r=exp(Pi*sqrt(163))-262537412640768743; for(i=1, 100, s=r*ceil(1/r)-1; print1(ceil(1/r), ", "); r=s); /* Georg Fischer, Nov 21 2020 */

Extensions

More terms from Georg Fischer, Nov 21 2020

A102645 Decimal expansion of (Pi*sqrt(163))^e.

Original entry on oeis.org

2, 2, 8, 0, 6, 9, 9, 9, 2, 3, 8, 5, 5, 6, 1, 3, 9, 2, 7, 1, 7, 0, 3, 8, 9, 8, 9, 3, 4, 4, 3, 3, 1, 1, 1, 5, 1, 1, 7, 5, 8, 8, 1, 6, 6, 2, 5, 0, 8, 3, 3, 0, 3, 9, 9, 3, 7, 4, 4, 7, 4, 0, 3, 5, 4, 9, 0, 6, 9, 5, 6, 0, 6, 3, 3, 0, 7, 3, 3, 9, 1, 2, 6, 7, 5, 7, 3, 1, 7, 2, 7, 4, 4, 7, 2, 9, 8, 4, 0, 6, 8, 8, 8, 8
Offset: 5

Views

Author

Gerald McGarvey, Feb 01 2005

Keywords

Comments

The rounded value of this constant is 22807, a prime of the form p^2 + 6 where p is prime (cf. A079141), a balanced prime of order four (cf. A082079), a smallest prime larger than a square of an n-th prime, a largest prime == 7 mod 8 with class number 2n+1 (cf. A002147) and a prime p such that x^36 = 2 has no solution mod p, but x^12 = 2 has a solution mod p (cf. A059668).

Examples

			22806.99923855613927170389893443311151175881662508330399...
		

Crossrefs

Cf. A060295.

Programs

  • Mathematica
    RealDigits[(Pi*Sqrt[163])^E, 10, 111][[1]] (* Robert G. Wilson v, Feb 04 2005 *)

A111310 Decimal expansion of (e^(Pi*sqrt(163)) - 744)^(1/3).

Original entry on oeis.org

6, 4, 0, 3, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 9, 0, 3, 1, 7, 3, 5, 2, 3, 1, 9, 4, 7, 0, 1, 2, 6, 5, 0, 2, 8, 3, 5, 5, 3, 9, 0, 2, 6, 0, 3, 3, 6, 6, 3, 9, 2, 1, 8, 9, 9, 6, 0, 9, 3, 6, 1, 4, 8, 1, 2, 4, 5, 8, 3, 0, 3, 8, 8, 5, 3, 5, 4, 1, 1, 5, 3, 8, 6, 1, 9, 9, 6, 2
Offset: 6

Views

Author

Michael Trott (mtrott(AT)wolfram.com) and Robert G. Wilson v, Jul 15 2005

Keywords

Examples

			Equals 640319.99999999999999999999999939031735231947012650283553902603366...
while (A060295)^(1/3) = 640320.0000000006048637350490160394717418188...
		

References

  • Michael Trott, The Mathematica Guide Book for Programming, Springer, 2004, page 8.

Crossrefs

Cf. A060295.

Programs

  • Mathematica
    RealDigits[(E^(Pi*Sqrt[163]) - 744)^(1/3), 10, 124][[1]]
  • PARI
    (exp(Pi*sqrt(163))-744)^(1/3)

A262674 Decimal expansion of the real root of x^3 - 6x^2 + 4x - 2.

Original entry on oeis.org

5, 3, 1, 8, 6, 2, 8, 2, 1, 7, 7, 5, 0, 1, 8, 5, 6, 5, 9, 1, 0, 9, 6, 8, 0, 1, 5, 3, 3, 1, 8, 0, 2, 2, 4, 6, 7, 7, 2, 1, 9, 1, 9, 8, 0, 8, 8, 3, 6, 9, 0, 0, 2, 6, 0, 2, 2, 8, 0, 9, 1, 9, 9, 5, 8, 4, 0, 1, 9, 5, 8, 9, 7, 4, 5, 7, 3, 2, 1, 8, 7, 4, 3, 6, 6, 5, 3, 4, 5, 9, 1, 0, 7, 4, 8, 7, 1, 5, 4, 0, 0, 4, 5, 5, 8, 9
Offset: 1

Views

Author

Jean-François Alcover, Sep 27 2015

Keywords

Comments

Algebraic integer of degree 3. - Charles R Greathouse IV, Apr 18 2016

Examples

			5.318628217750185659109680153318022467721919808836900260228...
		

Crossrefs

Cf. A060295.

Programs

  • Mathematica
    RealDigits[Root[#^3 - 6#^2 + 4# - 2&, 1], 10, 106] // First
  • PARI
    solve(x=5, 6, x^3 - 6*x^2 + 4*x - 2) \\ Michel Marcus, Sep 27 2015
    
  • PARI
    polrootsreal(x^3-6*x^2+4*x-2)[1] \\ Charles R Greathouse IV, Apr 18 2016

Formula

Equals (1/3)*(6 + (135 - 3*sqrt(489))^(1/3) + (3*(45 + sqrt(489)))^(1/3)).
Also equals exp(Pi*i/24)*eta(tau)/eta(2*tau), where eta is Dedekind's eta function and tau = (1 + sqrt(163) i) / 2.
Equals 2 + A160332. - R. J. Mathar, Sep 29 2015

A266296 Decimal expansion of a number close to 24, related to the Ramanujan number e^(Pi*sqrt(163)).

Original entry on oeis.org

2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 1, 2, 7, 8, 7, 3, 8, 6, 1, 4, 1, 1, 2, 0, 7, 5, 0, 6, 3, 5, 1, 1, 5, 7, 2, 8, 9, 0, 7, 2, 5, 7, 7, 2, 6, 4, 9, 5, 5, 4, 3, 5, 0, 9, 9, 5, 1, 2, 3, 4, 5, 2, 7, 1, 7, 9, 8, 6, 3, 2, 0, 3, 3, 8, 0, 9, 1, 3, 0, 5, 8, 5, 8, 5, 9, 3, 7, 4, 9, 3, 5, 6, 5, 5, 2, 9
Offset: 2

Views

Author

Jean-François Alcover, Mar 13 2016

Keywords

Examples

			24.00000000000000105127873861411207506351157289072577264955435...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; r4A[tau_] := With[{q = Exp[2 I Pi tau]}, (1/q) (QP[q^2]^2/(QP[q] QP[q^4]))^24]; RealDigits[r4A[(1/2) Sqrt[-163]] - Exp[Pi Sqrt[163]], 10, 105][[1]]
    (* or: *)
    x = Root[#^3 - 6#^2 + 4# - 2&, 1]; RealDigits[x^24 - Exp[Pi Sqrt[ 163]], 10, 105][[1]]

Formula

x^24 - e^(Pi*sqrt(163)), where x is the real root of x^3 - 6x^2 + 4x - 2.
Previous Showing 21-26 of 26 results.