A207360 Numbers n, not squarefree, satisfying A055231(n) = A055231(n + A055231(n)).
8, 40, 56, 88, 104, 136, 152, 184, 232, 248, 280, 288, 296, 328, 344, 376, 424, 440, 472, 488, 520, 536, 568, 584, 616, 632, 664, 675, 680, 712, 728, 760, 776, 808, 824, 856, 872, 904, 920, 952, 1016, 1048, 1064, 1096, 1112, 1144, 1160, 1192, 1208, 1240, 1256
Offset: 1
Keywords
Examples
136 is in the sequence because A055231(136) = A055231(17*2^3) = 17, A055231(136 + 17) = A055231(153) = A055231(17*3^2) = 17.
Programs
-
Maple
isA013929 := proc(n) n>3 and not numtheory[issqrfree](n) ; end proc: isA207360 := proc(n) isA013929(n) and (A055231(n)- A055231(n+ A055231(n))=0); end proc: for n from 1 to 5000 do if isA207360(n) then printf(`%d, `,n); end if; end do: # (adapted from A140394).
-
Mathematica
rad[n_] := Times @@ FactorInteger[n][[All, 1]]; A055231[n_] := Denominator[n/rad[n]^2]; Select[Range[2000], !SquareFreeQ[#] && A055231[#] == A055231[# + A055231[#]]&] (* Jean-François Alcover, Jun 18 2024 *)
-
PARI
isA013929(n)={ (n>3) && !issquarefree(n) } isA207360(n)={ isA013929(n) && ( A055231(n)-A055231(n+A055231(n)) ==0) } { for(n=1,1300, if(isA207360(n), print1(n" ") ) ; ) ; } /* R. J. Mathar, Mar 12 2012 */
Comments