A202013 The number of functions f:{1,2,...,n}->{1,2,...,n} that have an odd number of odd length cycles and no even length cycles.
0, 1, 2, 12, 100, 1120, 15606, 260344, 5056136, 112026240, 2788230250, 77009739136, 2337124786668, 77302709780608, 2767629599791070, 106631592312384000, 4398877912885363216, 193450993635808976896, 9034380526387410161874, 446519425974262943518720, 23284829853408862172112500
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, t, add( `if`(j::odd, (j-1)!*b(n-j, 1-t)* binomial(n-1, j-1), 0), j=1..n)) end: a:= n-> add(b(j, 0)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..20); # Alois P. Heinz, May 20 2016
-
Mathematica
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Sinh[Log[((1 + t)/(1 - t))^(1/2)]], {x, 0, 20}], x] CoefficientList[Series[(((1-LambertW[-x])/(1+LambertW[-x]))^(1/2))/2 - 1/(2*((1-LambertW[-x])/(1+LambertW[-x]))^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 24 2013 *)
Formula
E.g.f.: sinh(log(((1-LambertW(-x))/(1+LambertW(-x)))^(1/2))). - corrected by Vaclav Kotesovec, Sep 24 2013
a(n) ~ n! * 2^(3/4)*Gamma(3/4)*exp(n)/(4*Pi*n^(3/4)) * (1+7*Pi/(24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Sep 24 2013
Comments