cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A060579 Number of homeomorphically irreducible general graphs on 4 labeled nodes and with n edges.

Original entry on oeis.org

1, 6, 19, 68, 242, 704, 1981, 5140, 12364, 27614, 57598, 113108, 210812, 375606, 643646, 1066196, 1714445, 2685464, 4109493, 6158768, 9058119, 13097592, 18647371, 26175300, 36267330, 49651242, 67224024, 90083308, 119563302
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: (4*x^15 + 5*x^14 - 194*x^13 + 881*x^12 - 2058*x^11 + 3096*x^10 - 3330*x^9 + 2628*x^8 - 1398*x^7 + 359*x^6 + 72*x^5 - 93*x^4 + 28*x^3 + 4*x^2 - 4*x + 1)/(x - 1)^10. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060580 Number of homeomorphically irreducible general graphs on 5 labeled nodes and with n edges.

Original entry on oeis.org

1, 10, 40, 185, 765, 2845, 10220, 33885, 105185, 305465, 830811, 2119875, 5091525, 11565505, 24977315, 51552005, 102175360, 195301015, 361365695, 649360880, 1136438375, 1941722170, 3245874555, 5318438260, 8555568895, 13531506921
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: - (5*x^22 - 20*x^21 + 23*x^20 - 815*x^19 + 8110*x^18 - 37255*x^17 + 104890*x^16 - 204469*x^15 + 296720*x^14 - 337455*x^13 + 310150*x^12 - 229885*x^11 + 131054*x^10 - 50485*x^9 + 6490*x^8 + 7255*x^7 - 6730*x^6 + 3242*x^5 - 995*x^4 + 180*x^3 - 5*x^2 - 5*x + 1)/(x - 1)^15. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
Previous Showing 11-12 of 12 results.