cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A352287 Numbers k such that, for every prime p dividing k, k has a nontrivial divisor which is congruent to 1 (mod p).

Original entry on oeis.org

1, 12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150, 160, 168, 180, 192, 210, 216, 224, 240, 252, 264, 270, 280, 288, 300, 306, 315, 320, 324, 336, 351, 360, 380, 384, 392, 396, 400, 420, 432, 448, 450, 480, 495, 504, 520, 525, 528, 540, 546, 552, 560, 576, 600
Offset: 1

Views

Author

David Speyer, Mar 10 2022

Keywords

Comments

When considering whether an integer k is the order of a finite simple group, the first thing one checks is whether the number of p-Sylow subgroups is forced to be 1 for some p dividing k. This occurs if the only divisor of k which is 1 (mod p) is 1 itself. This sequence consists of the numbers that survive this test.

Examples

			105 is in the sequence, since it is divisible by 7 which is 1 (mod 3), 21 which is 1 (mod 5), and 15 which is 1 (mod 7).
		

Crossrefs

Programs

  • Mathematica
    divq[n_, p_] := AnyTrue[Rest @ Divisors[n], Mod[#, p] == 1 &]; q[1] = True; q[n_] := AllTrue[FactorInteger[n][[;; , 1]], divq[n, #] &]; Select[Range[600], q] (* Amiram Eldar, May 05 2022 *)
  • PARI
    isok(k) = {my(f=factor(k), d=divisors(f)); for (i=1, #f~, if (vecsum(apply(x->((x % f[i,1]) == 1), d)) == 1, return(0)); ); return(1);} \\ Michel Marcus, Mar 11 2022
    
  • Sage
    print([ n for n in range(1, 601)
            if set( prime_factors(n) )
            == set( p for p in prime_factors(n)
                    for d in divisors(n)
                    if d > 1 and d < n
                    if p.divides(d - 1)
          ) ] )  # Peter Luschny, Mar 14 2022

A327912 Orders of perfect non-simple groups.

Original entry on oeis.org

120, 336, 720, 960, 1080, 1320, 1344, 1920, 2160, 2184, 2688, 3000, 3600, 3840, 4860, 4896, 5040, 5376, 5760, 6840, 7200, 7500, 7560, 7680, 9720, 10080, 10752, 11520, 12144, 14400, 14520, 14580, 15000, 15120, 15360, 15600, 16464, 17280, 19656, 20160, 21504, 21600, 23040, 24360, 28224, 29160, 29760, 30240, 30720, 32256, 34560, 37500, 39600, 40320, 43008, 43200, 43320, 43740, 46080, 48000, 50616, 51840, 56448, 57600, 57624, 58240, 58320, 60480
Offset: 1

Views

Author

Sébastien Palcoux, Sep 29 2019

Keywords

Comments

The smallest number n such that there is a simple group and a non-simple perfect group of order n is 20160. So this sequence is A060793 minus A001034 (as sets) for the orders less than 20160. The next known such exceptions are 181440, 262080, 443520 and 604800.
The perfect groups of order 61440, 122880, 172032, 245760, 344064, 491520, 688128, 983040 have not completely been determined yet. Then GAP neither provides the number of these groups nor the groups themselves.

References

  • The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. gap-system.org.
  • D.F. Holt and W. Plesken, Perfect Groups, Oxford Math. Monographs, Oxford University Press, 1989.

Crossrefs

Programs

  • GAP
    OrderPerfectNonSimple:=function(n1,n2)
       local it,S,G,L,o,No,i,c;
       it:=SimpleGroupsIterator(n1,n2);
       S:=[];
       for G in it do
          Add(S,Order(G));
       od;
       L:=[];
       for o in [n1..n2] do
          c:=0;
          for i in S do
             if i=o then
                c:=c+1;
             fi;
          od;
          No:=NumberPerfectGroups(o);
          if No>c then
             Add(L,o);
             if c>0 then
                Print([o,c,No]);
             fi;
          fi;
       od;
       return L;
    end;;
Previous Showing 11-12 of 12 results.