cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A300390 The number of paths of length 7*n from the origin to the line y = 3*x/4 with unit east and north steps that stay below the line or touch it.

Original entry on oeis.org

1, 5, 227, 15090, 1182187, 101527596, 9247179818, 877362665128, 85783306955099, 8582893111512001, 874542924575207352, 90437361732467946334, 9467275300762187682554, 1001309098267187214993056, 106836493655355495755649544, 11485688815900189437990930096, 1242964338344397490958154292155
Offset: 0

Views

Author

Bryan T. Ek, Mar 05 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (7*n,0) with step set [1,3], [1,-4].

Examples

			For n=1, the possible walks are EEEENNN, EEENENN, EENEENN, EEENNEN, EENENEN.
		

Crossrefs

Programs

  • Mathematica
    m = 17; f = 0; Do[f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1 + O[t]^m, {m}]; CoefficientList[f, t] (* Jean-François Alcover, Feb 18 2019 *)

Formula

G.f. satisfies: f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/7)*binomial(7*n, 3*n)*x^n/n ) - Bizley.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/7)*binomial(7*n-7*k, 3*n-3*k)*a(k) for n >= 1. (End)

A300391 The number of paths of length 8*n from the origin to the line y = 3*x/5 with unit east and north steps that stay below the line or touch it.

Original entry on oeis.org

1, 7, 525, 58040, 7574994, 1084532963, 164734116407, 26070940600055, 4252443527211637, 709846349042619913, 120679177855928146859, 20822762876863605793639, 3637213213067542990001936, 641912742432770594132245835, 114287840570892852593437353124, 20502971288127330644273350110698
Offset: 0

Views

Author

Bryan T. Ek, Mar 05 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (8*n,0) with step set [1,3], [1,-5].

Examples

			For n=1, the possible walks are EEEEENNN, EEEENENN, EEEENNEN, EEENEENN, EEENENEN, EENEEENN, EENEENEN.
		

Crossrefs

Formula

G.f. f satisfies f = t^7*f^56 - 2*t^6*f^51 + t^6*f^50 - t^6*f^49 + 7*t^6*f^48 + t^5*f^46 - t^5*f^45 - 3*t^5*f^43 + 5*t^5*f^42 - 6*t^5*f^41 + 21*t^5*f^40 - 3*t^4*f^37 - 3*t^4*f^36 + 8*t^4*f^35 + 10*t^4*f^34 - 15*t^4*f^33 + 35*t^4*f^32 - 2*t^3*f^31 + 2*t^3*f^30 - 9*t^3*f^28 + 22*t^3*f^27 + 10*t^3*f^26 - 20*t^3*f^25 + 35*t^3*f^24 + 3*t^2*f^22 + 5*t^2*f^21 - 9*t^2*f^20 + 18*t^2*f^19 + 5*t^2*f^18 - 15*t^2*f^17 + t*(21*t + 1)*f^16 - t*f^15 + 3*t*f^13 - 3*t*f^12 + 5*t*f^11 + t*f^10 - 6*t*f^9 + 7*t*f^8 + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/8)*binomial(8*n, 3*n)*x^n/n ) - Bizley.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/8)*binomial(8*n-8*k, 3*n-3*k)*a(k) for n >= 1. (End)

A165997 Irregular triangle read by rows: T(0,0) = 1, T(n,k) = T(n,k-1) + T(n-1,k) for n > 0, 0 < k <= f(n), where f(n) = floor((2*n+3)/3), and entries outside triangle are 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 1, 4, 9, 9, 1, 5, 14, 23, 23, 1, 6, 20, 43, 66, 1, 7, 27, 70, 136, 136, 1, 8, 35, 105, 241, 377, 377, 1, 9, 44, 149, 390, 767, 1144, 1, 10, 54, 203, 593, 1360, 2504, 2504, 1, 11, 65, 268, 861, 2221, 4725, 7229, 7229, 1, 12, 77, 345, 1206
Offset: 0

Views

Author

Gerald McGarvey, Oct 03 2009

Keywords

Comments

There are f(n) = floor((2*n+3)/3) = A004396(n+1) terms in row n.

Examples

			Triangle begins:
       k=0   1   2    3     4     5     6      7      8
  n=0:   1
  n=1:   1
  n=2:   1,  1
  n=3:   1,  2,  2
  n=4:   1,  3,  5
  n=5:   1,  4,  9,   9
  n=6:   1,  5, 14,  23,   23
  n=7:   1,  6, 20,  43,   66
  n=8:   1,  7, 27,  70,  136,  136
  n=9:   1,  8, 35, 105,  241,  377,  377
  n=10:  1,  9, 44, 149,  390,  767, 1144
  n=11:  1, 10, 54, 203,  593, 1360, 2504,  2504
  n=12:  1, 11, 65, 268,  861, 2221, 4725,  7229,  7229
  n=13:  1, 12, 77, 345, 1206, 3427, 8152, 15381, 22610
  ...
		

Crossrefs

Cf. A004396 (row lengths).
Cf. A060941 (diagonal T(3*n, 2*n)).

Programs

  • PARI
    f(n) = floor((2*(n-1)+3)/3); s=14; M=matrix(s,s); for(n=1,s,M[n,1]=1); for(n=2,s,for(k=2,f(n),M[n,k]=M[n,k-1]+M[n-1,k])); for(n=1,s,for(k=1,f(n),print1(M[n,k],", ")))
Previous Showing 21-23 of 23 results.