cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A365052 Decimal expansion of continued fraction [1; 4, 9, 16, 25, ... n^2, ... ].

Original entry on oeis.org

1, 2, 4, 3, 2, 8, 8, 4, 7, 8, 3, 9, 9, 7, 1, 5, 6, 4, 4, 0, 8, 2, 4, 9, 6, 5, 4, 5, 3, 9, 4, 4, 2, 9, 4, 9, 9, 2, 3, 1, 2, 0, 0, 2, 6, 1, 1, 9, 7, 4, 4, 6, 8, 8, 5, 0, 6, 6, 4, 9, 7, 4, 5, 9, 8, 8, 1, 6, 3, 0, 3, 2, 2, 3, 3, 8, 2, 5, 3, 4, 2, 1, 4, 5, 9, 6, 4, 9, 8, 1, 5, 6, 1, 2, 1, 8, 5, 5, 9, 5
Offset: 1

Views

Author

Rok Cestnik, Aug 18 2023

Keywords

Examples

			1.243288478399715644...
		

Crossrefs

Cf. A073824 (reciprocal), A036246/A036245 (convergents).

Programs

  • Mathematica
    A365052 = RealDigits[FromContinuedFraction[Range[1,50]^2],10,#][[1]]&;
  • PARI
    p(N) = my(m=contfracpnqn(vector(N, i, i^2))); m[1,1]/m[2,1];
    A365052(N) = {my(t=2); while(floor(10^N*p(t)) != floor(10^N*p(t+1)), t++); digits(floor(10^(N-1)*p(t)))};

Formula

Equals 1/A073824.

A385303 Decimal expansion of the real number whose continued fraction is Golomb's sequence (A001462).

Original entry on oeis.org

1, 4, 1, 0, 7, 8, 4, 5, 3, 0, 7, 4, 9, 5, 3, 5, 5, 9, 1, 9, 3, 4, 7, 9, 9, 4, 2, 0, 2, 1, 0, 5, 7, 5, 1, 7, 8, 6, 1, 4, 6, 8, 6, 5, 1, 7, 3, 6, 6, 1, 0, 8, 6, 5, 1, 7, 2, 5, 2, 2, 6, 5, 6, 4, 7, 9, 6, 3, 4, 2, 1, 3, 2, 2, 0, 5, 1, 2, 6, 7, 2, 3, 6, 5, 3, 2, 9, 6, 3, 3, 5, 6, 8, 9, 8, 7, 3, 8, 1, 7
Offset: 1

Views

Author

Jason Bard, Jun 24 2025

Keywords

Examples

			1.4107845307495355919347994202105751786146865173661...
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[n - 1]]]; (* A001462 *)
    GenA385303[n_Integer] := Module[{cf1, cf2, d1, d2, i = n}, While[i < 2 n,
       cf1 = Table[a[k], {k, 1, i}]; cf2 = Table[a[k], {k, 1, i + 1}];
       d1 = RealDigits[FromContinuedFraction[cf1], 10, n+1][[1]]; d2 = RealDigits[FromContinuedFraction[cf2], 10, n+1][[1]];
       If[Take[d1,n] === Take[d2,n], Return[Take[d1,n]]]; i++;]];
    GenA385303[100]

A279906 Decimal expansion of the number whose continued fraction expansion consists of the even numbers.

Original entry on oeis.org

2, 2, 4, 0, 1, 9, 3, 7, 2, 3, 8, 7, 0, 0, 8, 9, 7, 4, 1, 1, 0, 5, 2, 2, 0, 6, 4, 1, 7, 2, 9, 8, 2, 9, 7, 7, 2, 0, 2, 7, 2, 4, 6, 8, 6, 7, 2, 9, 0, 3, 9, 3, 6, 5, 3, 5, 4, 4, 7, 7, 7, 6, 2, 0, 4, 2, 5, 3, 8, 9, 0, 7, 7, 2, 5, 4, 2, 1, 5, 9, 9, 2, 8, 8, 4, 6, 3, 7, 5, 1, 0, 4, 1, 2, 4, 9, 5, 3, 9, 6, 7, 8, 2, 8, 5
Offset: 1

Views

Author

Robert G. Wilson v, Dec 26 2016

Keywords

Examples

			2.2401937238700897411052206417298297720272468672903936535447776204253890772...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FromContinuedFraction[ 2Range[ 38]], 10, 111]
    RealDigits[ BesselI[0, 1]/BesselI[1, 1], 10, 111] (* Robert G. Wilson v, Feb 17 2017 *)

A328726 Decimal expansion of the number with continued fraction expansion 4, 6, 8, 9, 10, 12, 14, 15, ... (A002808 = composite numbers).

Original entry on oeis.org

4, 1, 6, 3, 3, 1, 0, 4, 7, 0, 9, 4, 1, 1, 4, 9, 3, 4, 6, 2, 0, 2, 7, 6, 8, 5, 9, 3, 8, 1, 3, 0, 3, 9, 5, 0, 7, 0, 4, 3, 9, 5, 8, 0, 6, 2, 3, 4, 3, 1, 6, 1, 8, 0, 8, 4, 0, 2, 1, 9, 6, 6, 2, 3, 2, 2, 5, 8, 1, 5, 7, 1, 6, 5, 7, 7, 3, 0, 8, 4, 9, 0, 8, 9, 6, 7, 6, 8, 0, 1, 4, 4, 6, 3, 8, 8, 6, 7, 5, 1, 1, 6, 3, 9, 2
Offset: 1

Views

Author

Keywords

Examples

			4.163310470941149346202768593813039507043958...
		

Crossrefs

Formula

Equals 1/A302937. - Alois P. Heinz, Nov 13 2019

Extensions

More digits from Alois P. Heinz, Nov 13 2019

A361873 Decimal representation of continued fraction 1, 4, 7, 10, 13, 16, 19, ... (A016777).

Original entry on oeis.org

1, 2, 4, 1, 4, 9, 5, 7, 1, 9, 5, 7, 9, 3, 0, 3, 1, 1, 3, 0, 1, 9, 9, 6, 6, 3, 7, 6, 3, 0, 6, 4, 5, 0, 3, 2, 3, 4, 8, 0, 8, 5, 8, 6, 7, 1, 2, 5, 3, 6, 1, 3, 4, 8, 6, 4, 5, 4, 5, 9, 6, 2, 3, 3, 5, 6, 7, 5, 5, 9, 2, 4, 2, 7, 5, 6, 7, 2, 9, 7, 4, 4, 0, 6, 3, 9, 2, 6, 1, 7, 6, 9, 8, 7, 3, 2, 4, 5, 9, 7, 9, 4, 5, 7, 4, 9, 9, 7, 4, 1, 5, 5, 7, 1, 2, 0, 7, 6, 6, 7
Offset: 1

Views

Author

Kelvin Voskuijl, Mar 27 2023

Keywords

Examples

			1.24149571957930311301996637630645032348085867125361348645459...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + BesselI[4/3, 2/3]/BesselI[1/3, 2/3], 10, 120][[1]]

Formula

Equals 1 + BesselI(4/3, 2/3)/BesselI(1/3, 2/3).
Previous Showing 21-25 of 25 results.