cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A061126 Number of degree-n permutations of order exactly 16.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1307674368000, 22230464256000, 400148356608000, 5068545850368000, 101370917007360000, 1490152480008192000, 24977793950613504000, 343667682838351872000
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8 + 1/16*x^16).

A061127 Number of degree-n permutations of order exactly 24.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1663200, 19958400, 259459200, 4843238400, 72648576000, 988020633600, 14600749363200, 224704121241600, 3614691131251200, 84808750650624000, 1509309706083379200, 29359195162807910400
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x^24/24]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6+x^8/8+x^12/12]+(Exp[x^12/12]-1)(Exp[x^8/8]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^8/8]-1)(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3+x^4/4]+(Exp[x^8/8]-1)(Exp[x^3/3]-1)Exp[x+x^2/2+x^4/4],{x,0,nn}],x]//Rest (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x + 1/2*x^2 + 1/4*x^4) - exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/12*x^12) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/8*x^8 + 1/12*x^12 + 1/24*x^24).
Previous Showing 21-22 of 22 results.