cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A326241 Number of degree-n even permutations of order dividing 12.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 216, 1296, 10368, 78912, 634896, 5572656, 51817536, 477672768, 8268884352, 101752505856, 1417554660096, 20985416983296, 344834432195328, 5096129755468032, 70148917686998016
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1), (1, 2, 3), (1, 3, 2) (permutations in cyclic notation).
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • Maple
    E:= (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) + (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30);# Robert Israel, Jul 08 2019
  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^3/3 + x^4/4 + x^6/6 +x^12/12]+1/2 Exp[x - x^2/2 + x^3/3 - x^4/4 - x^6/6 - x^12/12], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) + (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)).

A326242 Number of degree-n odd permutations of order dividing 12.

Original entry on oeis.org

0, 0, 1, 3, 12, 60, 360, 2016, 11088, 73872, 602640, 4411440, 81677376, 934435008, 8100473472, 104370819840, 1448725616640, 15823660179456, 247231858514688, 3703908371910912, 66727356304757760, 1124506454958351360, 19305439846610835456
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1, 2), (2, 3), (1, 3) (permutations in cyclic notation).
		

Crossrefs

Programs

  • Maple
    E:= (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) - (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30); # Robert Israel, Jul 08 2019
  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^3/3 + x^4/4 + x^6/6 +x^12/12]-1/2 Exp[x - x^2/2 + x^3/3 - x^4/4 - x^6/6 - x^12/12], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) - (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)).

A061138 Number of degree-n odd permutations of order exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 6, 30, 90, 210, 1680, 12096, 114660, 833580, 5928120, 38112360, 259194936, 1739195640, 17043237120, 167089937280, 1837707369840, 18342985021776, 181206905922720, 1673742164139360, 16992525855006240
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).

A061139 Number of degree-n odd permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 20, 240, 1260, 5600, 45360, 383040, 2451680, 17128320, 157769040, 1902380480, 18882623760, 163633317120, 2095059774080, 30792478993920, 346562329685760, 3905491275514880, 58609449249207360, 866031730098205440
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) - 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).
Previous Showing 11-14 of 14 results.