cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A320784 Negated inverse Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 8, 11, 14, 23, 31, 47, 68, 101, 144, 217, 315, 471, 693, 1035, 1528, 2287, 3397, 5085, 7587, 11377, 17017, 25565, 38349, 57681, 86724, 130645, 196778, 296853, 447864, 676479, 1022082, 1545685, 2338299, 3540111, 5361606, 8125551
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    -EulerInvTransform[-Table[SquaresR[1,8*n+1]/2,{n,30}]]

A320783 Inverse Euler transform of (-1)^(n - 1).

Original entry on oeis.org

1, 1, -2, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986, -505294125, 981706806
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

After a(1) and a(2), same as A038063.
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[(-1)^(#-1)&,30]]

A320785 Inverse Euler transform of the number of factorizations function A001055.

Original entry on oeis.org

1, 1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 1, -1, 0, 0, 1, 1, -3, 3, -3, 0, 4, -6, 6, -5, 5, -1, -7, 13, -16, 15, -8, -3, 12, -25, 41, -40, 21, 10, -51, 83, -93, 81, -38, -44, 148, -234, 258, -190, 35, 184, -429, 616, -660, 480, -18, -640, 1289, -1714, 1693, -1039, -268
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    EulerInvTransform[Table[Length[facs[n]],{n,100}]]

A320786 Inverse Euler transform of {1,0,1,0,0,0,...}.

Original entry on oeis.org

1, 1, -1, 1, -1, 1, -2, 2, -2, 3, -5, 6, -7, 11, -16, 20, -27, 39, -55, 75, -102, 145, -207, 286, -397, 565, -802, 1123, -1581, 2248, -3193, 4517, -6399, 9112, -12984, 18457, -26270, 37502, -53553, 76416, -109146, 156135, -223446, 319764, -457884, 656288, -941081
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[PadRight[{1,0,1},50]]

A362627 Euler transform of sigma_n(n) (sum of n-th powers of divisors of n).

Original entry on oeis.org

1, 1, 6, 34, 322, 3588, 52844, 900082, 18111465, 411941506, 10548286788, 298667744593, 9286665651198, 314077164671106, 11484692279345752, 451291302965764596, 18966834595501974235, 848853415894558707472, 40305029983754331855502, 2023571200162099967806430, 107109031661019664234558776
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 28 2023

Keywords

Crossrefs

Cf. A023887 (sigma_n(n)), A061256, A350503, A353233.

Programs

  • Mathematica
    a = Table[DivisorSigma[n, n], {n, 20}]; CoefficientList[Series[Product[1/(1 - x^m)^a[[m]], {m, 20}], {x, 0, 20}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^sigma(k,k).
a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k) for n>1, a(0)=1, where b(k) = Sum_{d|k} d*sigma(d,d).
Previous Showing 41-45 of 45 results.