cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A303557 a(0) = 1; a(n) = 2^(n-1)*prime(n)#, where prime(n)# is the product of first n primes.

Original entry on oeis.org

1, 2, 12, 120, 1680, 36960, 960960, 32672640, 1241560320, 57111774720, 3312482933760, 205373941893120, 15197671700090880, 1246209079407452160, 107173980829040885760, 10074354197929843261440, 1067881544980563385712640, 126010022307706479514091520, 15373222721540190500719165440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Comments

For n > 0, a(n) is the smallest number m having exactly n distinct prime divisors and exactly 2*n - 1 prime divisors counted with multiplicity.

Examples

			a(1) = 2^1;
a(2) = 2^2*3;
a(3) = 2^3*3*5;
a(4) = 2^4*3*5*7;
a(5) = 2^5*3*5*7*11, etc.
		

Crossrefs

Central terms of triangle A303555 (for n > 0).

Programs

  • Mathematica
    Join[{1}, Table[2^(n - 1) Product[Prime[j], {j, n}], {n, 18}]]

Formula

a(n) = A011782(n)*A002110(n).

A061236 Smallest number with prime(n)^3 divisors where prime(n) is n-th prime.

Original entry on oeis.org

24, 900, 810000, 729000000, 590490000000000, 531441000000000000, 430467210000000000000000, 387420489000000000000000000, 313810596090000000000000000000000, 228767924549610000000000000000000000000000, 205891132094649000000000000000000000000000000
Offset: 1

Views

Author

Labos Elemer, Jun 01 2001

Keywords

Examples

			If p = 2, then d(128) = d(24) = d(30) = 8 and a(1) = 24 < 30 is the smallest.
If p = 5, then 2^124 > (2^24)*(3^4) > 30^4 = 810000 = a(3).
		

Crossrefs

Formula

For p = 2, 24 is the solution. If a prime p > 2, the suitable powers of 30 are the least solutions: a(n) = Min{x | d(x) = A000005(x) = p(n)^3} = 30^(prime(n)-1). d(2^(ppp-1)) = d(2^(pp-1)*3^(p-1)) = d(30^(p-1)) = p^3 and 2^(ppp-1) > 2^(pp-1)*3^(p-1) > 30^(p-1) holds if p > 2.
a(n) = A005179(A030078(n)) = A005179(prime(n)^3). - Amiram Eldar, Jan 23 2025

Extensions

a(10)-a(11) from Amiram Eldar, Jan 23 2025

A137490 Numbers with 27 divisors.

Original entry on oeis.org

900, 1764, 2304, 4356, 4900, 6084, 6400, 10404, 11025, 12100, 12544, 12996, 16900, 19044, 23716, 26244, 27225, 28900, 30276, 30976, 33124, 34596, 36100, 38025, 43264, 49284, 52900, 53361, 56644, 60516, 65025, 66564, 70756, 73984, 74529
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^26 (subset of A089081), p^2*q^2*r^2 (like 900, 1764, 4356, squares of A007304) or p^2*q^8 (like 2304, 6400, subset of the squares of A030628) where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 27.
Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 + P(2)*P(8) - P(10) + P(26) = 0.00453941..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
Previous Showing 11-13 of 13 results.