cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A061741 Primes with 39 as smallest positive primitive root.

Original entry on oeis.org

166031, 264961, 325249, 388081, 450071, 462841, 543601, 735271, 816649, 823201, 915049, 1063561, 1155151, 1414081, 1415929, 1554169, 1704271, 1884121, 1952449, 2181271, 2215921, 2290831, 2477521, 2499421, 2514961, 2585647, 2633689
Offset: 1

Views

Author

Klaus Brockhaus, May 06 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Prime@Range@221000, PrimitiveRoot@# == 39 &] (* Robert G. Wilson v, May 11 2001 *)
  • PARI
    is(n)=if(n<9||!isprime(n), return(0)); for(k=2,38,if(znorder(Mod(k,n))==n-1, return(0))); znorder(Mod(39,n))==n-1 \\ Charles R Greathouse IV, Apr 28 2015

Extensions

More terms from Robert G. Wilson v, May 11 2001 and Dec 21 2005

A114657 Primes with 40 as smallest positive primitive root.

Original entry on oeis.org

1373989, 3296581, 3771211, 4014739, 4073371, 5191033, 15188731, 19461661, 23108101, 27478621, 27945061, 39242701, 40393051, 48942661, 51113941, 60043411, 62362411, 66868621, 71443531, 73572181, 94008091, 103767691, 106066171, 110543581, 110950171, 114407101
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Prime@Range@6354000, PrimitiveRoot@# == 40 &]

Extensions

a(23)-a(26) from Robert Price, Nov 18 2023

A114686 Primes with 71 as smallest positive primitive root.

Original entry on oeis.org

3659401, 8453041, 10319761, 14155681, 16391761, 18094561, 19616689, 20456329, 21677041, 22628929, 27275161, 32051881, 34228489, 37728601, 38884561, 39191881, 40101071, 40167241, 42163969, 47931601, 48461449, 49460161, 50389441, 54932329, 56219281, 57590569
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t={}; Do[ If[ PrimitiveRoot[ Prime@n] == 71, AppendTo[t, n]; Print@ Prime@n], {n, 3280000}]; Prime@t
  • PARI
    is(n)=if(n<72,return(0));for(k=2,70,if(znorder(Mod(k,n))==n-1,return(0)));znorder(Mod(71,n))==n-1&&isprime(n) \\ Charles R Greathouse IV, Jul 19 2011
    
  • PARI
    is(n)=isprime(n)&&lift(znprimroot(n))==71 \\ relies on implementation details, may not always work
    \\ Charles R Greathouse IV, Jul 19 2011

Extensions

a(23) and beyond from Robert Price, Nov 20 2023

A023048 Smallest prime having least positive primitive root n, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 7, 0, 23, 41, 71, 0, 0, 313, 643, 4111, 457, 1031, 439, 0, 311, 53173, 191, 107227, 409, 3361, 2161, 533821, 0, 12391, 0, 133321, 15791, 124153, 5881, 0, 268969, 48889, 64609, 0, 36721, 55441, 166031, 1373989, 156601, 2494381, 95471, 71761, 95525767
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 iff n is a perfect power m^k, m >= 1, k >= 2 (i.e., a member of A001597).
Of course if n is a perfect power then a(n) = 0, but it seems that the other direction is true only assuming the generalized Artin's conjecture. See the link from Tomás Oliveira e Silva below. - Jianing Song, Jan 22 2019

Examples

			a(2) = 3, since 3 has 2 as smallest positive primitive root and no prime p < 3 has 2 as smallest positive primitive root.
a(24) = 533821, since prime 533821 has 24 as smallest positive primitive root and no prime p < 533821 has 24 as smallest positive primitive root.
		

References

  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.

Crossrefs

Indices of the primes: A066529.
For records see A133433. See A133432 for a version without the 0's.

Programs

  • Mathematica
    t = Table[0, {100}]; Do[a = PrimitiveRoot@Prime@n; If[a < 101 && t[[a]] == 0, t[[a]] = n], {n, 10^6}]; Unprotect[Prime]; Prime[0] = 0; Prime@t; Clear[Prime]; Protect[Prime] (* Robert G. Wilson v, Dec 15 2005 *)
  • Python
    from sympy import nextprime, perfect_power, primitive_root
    def a(n):
        if perfect_power(n): return 0
        p = 2
        while primitive_root(p) != n: p = nextprime(p)
        return p
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Feb 13 2023
    
  • Python
    # faster version for initial segment of sequence
    from itertools import count, islice
    from sympy import nextprime, perfect_power, primitive_root
    def agen(): # generator of terms
        p, adict, n = 2, {None: 0}, 1
        for k in count(1):
            v = primitive_root(p)
            if v not in adict:
                adict[v] = p
            if perfect_power(n): adict[n] = 0
            while n in adict: yield adict[n]; n += 1
            p = nextprime(p)
    print(list(islice(agen(), 40))) # Michael S. Branicky, Feb 13 2023

Formula

a(n) = min { prime(k) | A001918(k) = n } U {0} = A000040(A066529(n)) (or zero). - M. F. Hasler, Jun 01 2018

Extensions

Comment corrected by Christopher J. Smyth, Oct 16 2013

A114659 Primes with 42 as smallest positive primitive root.

Original entry on oeis.org

2494381, 3835651, 5750071, 6610561, 9014281, 9288121, 9781201, 11350561, 12618061, 14573761, 16576981, 17640871, 22293241, 23513311, 24793921, 24885271, 27665821, 29904601, 30824401, 30895231, 31697821, 33515701, 38340901, 39033721, 39037351, 39051841
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@2379000, PrimitiveRoot@# == 42 &]

Extensions

a(23)-a(26) from Robert Price, Nov 19 2023

A114660 Primes with 43 as smallest positive primitive root.

Original entry on oeis.org

95471, 104711, 140617, 166871, 225289, 329281, 352489, 366791, 475151, 514751, 583801, 691681, 700561, 728281, 762721, 984959, 990361, 1026481, 1028329, 1044289, 1202041, 1252021, 1289401, 1369369, 1387681, 1565521, 1579751, 1694089, 1886329, 2043001
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@150000, PrimitiveRoot@# == 43 &]

Extensions

a(28)-a(30) from Robert Price, Nov 19 2023

A114662 Primes with 45 as smallest positive primitive root.

Original entry on oeis.org

95525767, 119154337, 187156663, 241624153, 307396447, 315255697, 350645233, 359030233, 397620007, 398947033, 414684817, 443874817, 512952007, 536331097, 556355647, 559634377, 588250447, 635613463, 657965743, 747854017, 753117457, 753369457, 800256913
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) t = {}; Do[ If[ PrimitiveRoot[Prime@n] == 45, AppendTo[t, n]; Print@n], {n, 38600000}]; Prime@t

Extensions

Duplicate at a(18) removed by Robert Price, Nov 19 2023
a(21)-a(23) from Robert Price, Nov 19 2023

A114663 Primes with 46 as smallest positive primitive root.

Original entry on oeis.org

273001, 830041, 1543081, 1897561, 1966561, 2298409, 2330641, 2503201, 2544481, 2782391, 2901649, 3056149, 3628249, 3828049, 4142161, 4260481, 4450681, 4575481, 4814209, 4948441, 5091241, 5103121, 5206319, 5540471, 5607361, 5845009, 6018769, 6228121, 6302521
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@420000, PrimitiveRoot@# == 46 &]

Extensions

a(26)-a(29) from Robert Price, Nov 19 2023

A114664 Primes with 47 as smallest positive primitive root.

Original entry on oeis.org

275641, 374761, 534601, 568921, 687961, 877321, 931921, 1062311, 1112471, 1126441, 1360631, 1371841, 1373761, 1736881, 2074801, 2097169, 2147473, 2152921, 2202601, 2214001, 2263801, 2427769, 2616071, 2652841, 2698921, 2759951, 3027361, 3244921, 3265441
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@220000, PrimitiveRoot@# == 47 &]
    Select[Prime[Range[200000]],PrimitiveRoot[#,1]==47&] (* PrimitiveRoot is now part of Mathematica's core language so there is no need to load NumberTheory`NumberTheoryFunctions first any longer *) (* Harvey P. Dale, Jul 16 2016 *)

Extensions

a(26)-a(29) from Robert Price, Nov 19 2023

A114669 Primes with 53 as smallest positive primitive root.

Original entry on oeis.org

161831, 543841, 786241, 1007161, 1331521, 1527289, 1591969, 1884791, 2005441, 2574601, 2784961, 3086977, 3131209, 3474719, 3735601, 3818929, 3829489, 3852601, 3856129, 4082401, 4145951, 4259641, 4353001, 4554553, 4740961, 4823641, 4893001, 5020391, 5206081
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@342000, PrimitiveRoot@# == 53 &]

Extensions

a(26)-a(29) from Robert Price, Nov 20 2023
Showing 1-10 of 32 results. Next