cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A169796 Expansion of ((1-x)/(1-2x))^9.

Original entry on oeis.org

1, 9, 54, 264, 1134, 4446, 16272, 56412, 187137, 598417, 1854882, 5597172, 16498632, 47638512, 135048672, 376592064, 1034663040, 2804590080, 7509232640, 19880294400, 52088352768, 135173578752, 347680161792, 886900948992, 2245014454272, 5641949085696
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2010

Keywords

Comments

a(n) is the number of weak compositions of n with exactly 8 parts equal to 0. - Milan Janjic, Jun 27 2010

Crossrefs

Cf. for ((1-x)/(1-2x))^k: A011782, A045623, A058396, A062109, A169792-A169797; a row of A160232.

Programs

  • Mathematica
    CoefficientList[Series[((1 - x)/(1 - 2 x))^9, {x, 0, 25}], x] (* Michael De Vlieger, Oct 15 2018 *)

Formula

G.f.: ((1-x)/(1-2*x))^9.
For n > 0, a(n) = 2^(n-16)*(n+8)*(n^7 + 100*n^6 + 3778*n^5 + 68056*n^4 + 606961*n^3 + 2543284*n^2 + 4524300*n + 2575440)/315. - Bruno Berselli, Aug 07 2011

A370695 G.f. A(x) satisfies A(x) = (1 + x*A(x)^(3/4) / (1-x))^4.

Original entry on oeis.org

1, 4, 22, 128, 777, 4872, 31330, 205560, 1370868, 9266104, 63343006, 437183260, 3042337215, 21323543252, 150395596016, 1066637271424, 7602188660799, 54422262148632, 391146728466980, 2821396586367568, 20417766975784066, 148200184917042112
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2024

Keywords

Crossrefs

Programs

  • Maple
    A370695 := proc(n)
        4*add(binomial(n-1,n-k)*binomial(3*k+4,k)/(3*k+4),k=0..n) ;
    end proc:
    seq(A370695(n),n=0..80) ; #R. J. Mathar, Oct 24 2024
  • PARI
    a(n) = 4*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+4, k)/(3*k+4));

Formula

a(n) = 4 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+4,k)/(3*k+4).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A307678.
a(n) ~ 9 * 31^(n + 1/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Mar 29 2024
D-finite with recurrence 2*(n+2)*(2*n+3)*a(n) +(-55*n^2-74*n-15)*a(n-1) +6*(37*n^2-46*n-4)*a(n-2) -(295*n-319)*(n-3)*a(n-3) +124*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Oct 24 2024
Previous Showing 11-12 of 12 results.