cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A358280 a(n) = Sum_{d|n} (d-1)!.

Original entry on oeis.org

1, 2, 3, 8, 25, 124, 721, 5048, 40323, 362906, 3628801, 39916930, 479001601, 6227021522, 87178291227, 1307674373048, 20922789888001, 355687428136444, 6402373705728001, 121645100409194912, 2432902008176640723, 51090942171713068802, 1124000727777607680001
Offset: 1

Views

Author

Seiichi Manyama, Nov 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (# - 1)! &]; Array[a, 23] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d-1)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (k-1)!*x^k/(1-x^k)))

Formula

G.f.: Sum_{k>0} (k-1)! * x^k/(1 - x^k).
If p is prime, a(p) = 1 + (p-1)!.

A355888 a(n) = Sum_{k=1..n} k! * floor(n/k).

Original entry on oeis.org

1, 4, 11, 38, 159, 888, 5929, 46276, 409163, 4038086, 43954887, 522957240, 6749978041, 93928274284, 1401602642411, 22324392570758, 378011820666759, 6780385526758368, 128425485935590369, 2561327494115859316, 53652269665825304363, 1177652997443472901166
Offset: 1

Views

Author

Seiichi Manyama, Jul 20 2022

Keywords

Crossrefs

Partial sums of A062363.

Programs

  • Mathematica
    Table[Sum[k!*Floor[n/k], {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = sum(k=1, n, n\k*k!);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*x^k/(1-x^k))/(1-x))
    
  • Python
    from math import factorial
    def A355888(n): return factorial(n)+n+sum(factorial(k)*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d!.
G.f.: (1/(1-x)) * Sum_{k>0} k! * x^k/(1 - x^k).
a(n) ~ n!. - Vaclav Kotesovec, Aug 11 2025

A358279 a(n) = Sum_{d|n} (d-1)! * d^(n/d).

Original entry on oeis.org

1, 3, 7, 29, 121, 747, 5041, 40433, 362935, 3629433, 39916801, 479006531, 6227020801, 87178326609, 1307674371487, 20922790212353, 355687428096001, 6402373709021811, 121645100408832001, 2432902008212950169, 51090942171709691335, 1124000727778046766849
Offset: 1

Views

Author

Seiichi Manyama, Nov 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (# - 1)! * #^(n/#) &]; Array[a, 22] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d-1)!*d^(n/d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*x^k/(1-k*x^k)))

Formula

G.f.: Sum_{k>0} k! * x^k/(1 - k * x^k).
If p is prime, a(p) = 1 + p!.

A351710 a(n) = Sum_{p|n, p prime} (n-p)!.

Original entry on oeis.org

0, 1, 1, 2, 1, 30, 1, 720, 720, 40440, 1, 3991680, 1, 479006640, 482630400, 87178291200, 1, 22230464256000, 1, 6403681380096000, 6402460884019200, 2432902008216556800, 1, 1175091669949317120000, 2432902008176640000, 620448401733245666380800, 620448401733239439360000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 16 2022

Keywords

Examples

			a(6) = 30; a(6) = Sum_{p|6} (6-p)! = (6-2)! + (6-3)! = 4*3*2*1 + 3*2*1 = 30.
		

Crossrefs

Formula

a(A000040(n)) = 1.
Previous Showing 11-14 of 14 results.