cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A358438 a(1) = 4, a(2) = 6; then a(n + 1) is the smallest semiprime number > a(n) such that the sum of any three consecutive terms is a semiprime.

Original entry on oeis.org

4, 6, 15, 25, 34, 35, 46, 62, 69, 74, 94, 106, 119, 121, 122, 134, 142, 146, 158, 169, 178, 206, 213, 214, 235, 249, 253, 265, 267, 299, 303, 319, 321, 334, 382, 395, 422, 445, 446, 454, 466, 469, 482, 514, 517, 538, 586, 589, 591, 623, 629
Offset: 1

Views

Author

Zak Seidov, Nov 17 2022

Keywords

Comments

Do even numbers thin out as you look at larger and larger numbers of terms? - Charles R Greathouse IV, Nov 18 2022

Examples

			4 + 6 + 15 = 25 = 5*5, 6 + 15 + 25 = 46 = 2*23.
		

Crossrefs

Cf. A062391 (analog for primes), A001358 (semiprimes).

Programs

  • Maple
    R:= 4,6:
    for i from 3 to 100 do
      s:= R[i-2]+R[i-1];
      for t from R[i-1]+1 do
        if numtheory:-bigomega(t) = 2 and numtheory:-bigomega(s+t)=2 then
          R:= R, t; break
        fi
    od od:
    R; # Robert Israel, Nov 18 2022
  • Mathematica
    s = {4, 6}; p = 4; q = 6; r = q + 1; Do[While[2 != PrimeOmega[r] || 2 != PrimeOmega[p + q + r], r++]; AppendTo[s, r]; p = q; q = r; r++, {100}]; s

A153128 Prime numbers such that the sum of any 2 or 4 consecutive terms are averages of twin prime pairs and sum of any 3 or 5 consecutive terms are primes.

Original entry on oeis.org

11, 31, 41, 67, 131, 3121, 4229, 13159, 14081, 24631, 49877, 64921, 71789, 127051, 154871, 178621, 249677, 260011, 350729, 401473, 487397, 537883, 567767, 718423, 724499, 763621, 1004987, 1016611, 1043951, 1053529, 1090949, 1295113, 1309907
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a=11;b=31;c=41;d=67;lst={a,b,c,d};Do[z=a+b+c+d+n;y=c+d+n;If[PrimeQ[z]&&n>d&&PrimeQ[n]&&PrimeQ[y]&&PrimeQ[a+b-1]&&PrimeQ[a+b+1]&&PrimeQ[b+c-1]&&PrimeQ[b+c+1]&&PrimeQ[c+d-1]&&PrimeQ[c+d+1]&&PrimeQ[d+n-1]&&PrimeQ[d+n+1]&&PrimeQ[a+b+c+d-1]&&PrimeQ[a+b+c+d+1]&&PrimeQ[b+c+d+n-1]&&PrimeQ[b+c+d+n+1],AppendTo[lst,n];a=b;b=c;c=d;d=n],{n,0,10!}];lst

A154502 Sum of any 3 consecutive numbers is prime and a(n+2)-(a(n+1)+a(n)) is prime, a(1)=3,a(2)=31.

Original entry on oeis.org

3, 31, 37, 71, 89, 157, 163
Offset: 1

Views

Author

Keywords

Comments

3+31+37=71;37-(3+31)=3,...

Crossrefs

Programs

  • Mathematica
    a=3;b=31;lst={a,b};Do[c=Prime[n];p1=c+a+b;p2=c-(a+b);If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,c];a=b;b=c],{n,9,9!}];lst

Extensions

NAME adapted to offset. - R. J. Mathar, Jun 19 2021

A168323 a(1)=3, a(2)=5; a(n+1) is the smallest prime number greater than a(n-1) and not equal to a(n) such that the sum of any three consecutive terms is a prime.

Original entry on oeis.org

3, 5, 11, 7, 13, 11, 17, 13, 23, 17, 31, 19, 47, 23, 61, 29, 67, 31, 83, 37, 103, 41, 107, 43, 113, 67, 127, 83, 137, 97, 139, 101, 149, 103, 157, 107, 167, 109, 173, 127, 179, 137, 193, 149, 199, 151, 227, 163, 229, 179, 233, 181, 239, 193, 241, 197, 263, 199, 271
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a=3;b=5;lst={a,b};Do[Do[If[PrimeQ[q]&&PrimeQ[a+b+q]&&q!=b,c=q;Break[]],{q,a+2,9!,2}];AppendTo[lst,c];a=b;b=c,{n,6!}];lst
Previous Showing 11-14 of 14 results.