cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A171618 Number of ways of writing n=k1+k2 with k1 and k2 in A167707.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 3, 3, 5, 4, 6, 5, 6, 5, 7, 6, 8, 6, 8, 8, 8, 9, 9, 10, 10, 9, 11, 10, 12, 12, 13, 11, 12, 13, 13, 15, 14, 14, 15, 14, 16, 14, 17, 17, 16, 17, 17, 18, 18, 19, 18, 19, 19, 21, 21, 19, 21, 20, 22, 24, 23, 22, 22, 23, 24, 25, 25, 24, 25, 24, 27, 26, 28, 27
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 13 2009

Keywords

Examples

			a(31)=9 because 31 = 0 + 31 = 3 + 28 = 5 + 26 = 7 + 24 = 9 + 22 = 10 + 21 = 11 + 20 = 14 + 17 = 15 + 16.
		

Crossrefs

Programs

  • Maple
    isA001097 := proc(n) isprime(n) and (isprime(n+2) or isprime(n-2)) ; end proc:
    isA164276 := proc(n) not isprime(n) and ( not isprime(n+1) or not isprime(n-1) ) ; end proc: isA167707 := proc(n) isA001097(n) or isA164276(n) ; end proc:
    A167707 := proc(n) option remember; if n = 1 then 0; else for a from procname(n-1)+1 do if isA167707(a) then return a; end if; end do; end if; end proc:
    A171618 := proc(n) a := 0 ; for i from 1 do p := A167707(i) ; q := n-p ; if q < p then return a ; end if; if isA167707(q) then a := a+1 ; end if; if q <= p then return a ; end if; end do: end proc:
    seq(A171618(n),n=1..120) ; # R. J. Mathar, May 22 2010
  • Mathematica
    isA001097[n_] := PrimeQ[n] && (PrimeQ[n+2] || PrimeQ[n-2]);
    isA164276[n_] := !PrimeQ[n] && (!PrimeQ[n+1] ||!PrimeQ[n-1]);
    isA167707[n_] := isA001097[n] || isA164276[n];
    A167707[n_] := A167707[n] = If[n == 1, 0, For[a = A167707[n-1]+1, True, a++, If[isA167707[a], Return@a]]];
    A171618[n_] := Module[{a}, a = 0; For[i = 1, True, i++, p = A167707[i]; q = n-p; If[q < p, Return@a]; If[isA167707[q], a++]; If[q <= p, Return@a]]];
    Table[A171618[n], {n, 1, 120}] (* Jean-François Alcover, Feb 23 2024, after R. J. Mathar *)

Extensions

a(29) and a(34) corrected and sequence extended by R. J. Mathar, May 22 2010

A062309 Number of ways writing n! as sums of a prime and a nonprime.

Original entry on oeis.org

0, 0, 2, 3, 6, 50, 307, 2329, 19907, 181263, 1736542, 19044663, 220730823, 2845615949, 39412442640
Offset: 1

Views

Author

Labos Elemer, Jul 05 2001

Keywords

Examples

			For n = 4: 4! = 24 = 23+1 = 2+22 = 3+21, so a(4) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(c = 0, m = n!); forprime(p = 2, m-1, if(!isprime(m - p), c++)); c;} \\ Amiram Eldar, Jul 17 2024

Formula

a(n) = A062602(n!).
a(n) = n!/2 - A062310(n) - A062311(n) for n >= 2. - Amiram Eldar, Jul 17 2024

Extensions

a(9)-a(13) from Sean A. Irvine, Mar 26 2023
a(14)-a(15) from Amiram Eldar, Jul 17 2024

A291708 Number of partitions of n into two prime parts or two nonprime parts.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 2, 2, 2, 4, 1, 3, 3, 4, 3, 6, 2, 6, 4, 6, 4, 8, 3, 9, 5, 9, 4, 9, 5, 11, 7, 9, 7, 13, 6, 15, 7, 10, 9, 14, 8, 16, 10, 14, 10, 16, 9, 19, 11, 18, 10, 17, 11, 21, 13, 18, 12, 20, 13, 25, 15, 18, 15, 24, 14, 27, 15, 19, 17, 26, 16, 28, 18, 25
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 20 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[KroneckerDelta[(PrimePi[k] - PrimePi[k - 1]), (PrimePi[n - k] - PrimePi[n - 1 - k])], {k, Floor[n/2]}], {n, 80}]

Formula

a(n) = Sum_{i=1..floor(n/2)} [A010051(i) = A010051(n-i)], where [] is the Iverson bracket.
a(n) = floor(n/2) - A062602(n).
Previous Showing 11-13 of 13 results.