cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A340247 Sum of the third largest parts r of the partitions of n into 4 parts q,r,s,t such that 1 <= q <= r <= s <= t and q + r + s > t.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 5, 7, 10, 15, 19, 28, 33, 46, 57, 75, 84, 113, 129, 164, 184, 232, 256, 319, 347, 425, 466, 561, 601, 723, 777, 918, 981, 1152, 1224, 1428, 1509, 1746, 1849, 2122, 2227, 2550, 2678, 3040, 3184, 3600, 3760, 4234, 4410, 4942, 5151, 5745, 5961, 6635
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[j*Sign[Floor[(i + k + j)/(n - i - j - k + 1)]], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 60}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign(floor((i+k+j)/(n-i-j-k+1))) * j.

A340248 Sum of the second largest parts s of the partitions of n into 4 parts q,r,s,t such that 1 <= q <= r <= s <= t and q + r + s > t.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 7, 10, 15, 22, 29, 42, 51, 71, 87, 116, 132, 177, 201, 259, 289, 368, 404, 508, 550, 681, 738, 900, 959, 1164, 1239, 1482, 1569, 1863, 1962, 2313, 2424, 2835, 2971, 3448, 3590, 4150, 4318, 4954, 5142, 5872, 6080, 6912, 7140, 8078, 8343, 9395, 9672
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[i*Sign[Floor[(i + k + j)/(n - i - j - k + 1)]], {i, j,  Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 60}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign(floor((i+k+j)/(n-i-j-k+1))) * i.

A340249 Sum of the largest parts t of the partitions of n into 4 parts q,r,s,t such that 1 <= q <= r <= s <= t and q + r + s > t.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 5, 8, 14, 18, 30, 35, 56, 63, 95, 109, 156, 166, 235, 255, 346, 369, 491, 517, 676, 707, 907, 952, 1200, 1239, 1548, 1605, 1974, 2037, 2481, 2550, 3078, 3156, 3774, 3874, 4592, 4685, 5522, 5642, 6596, 6726, 7818, 7958, 9200, 9354, 10754, 10939, 12510
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(n - i - j - k) Sign[Floor[(i + k + j)/(n - i - j - k + 1)]], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 60}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign(floor((i+k+j)/(n-i-j-k+1))) * (n-i-j-k).

A385860 a(n) is the number of distinct multisets of sides of quadrilaterals with perimeter n, where all four sides are squares.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 3, 0, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 0, 2, 1, 1, 1
Offset: 0

Views

Author

Felix Huber, Jul 22 2025

Keywords

Comments

a(n) is the number of partitions of n into 4 nonzero squares < n/2.

Examples

			The a(51) = 1 multiset is [1, 9, 16, 25].
The a(52) = 3 multisets are [1, 1, 25, 25], [4, 16, 16, 16] and [9, 9, 9, 25].
		

Crossrefs

Programs

  • Maple
    # After Alois P. Heinz (A025428)
    b:=proc(n,i,t)
        option remember;
        `if`(n=0,`if`(t=0,1,0),`if`(i<1 or t<1, 0, b(n,i-1,t)+`if`(i^2>n,0,b(n-i^2,i,t-1))))
        end:
    A385860:=n->b(n,floor(sqrt((n-1)/2)),4):
    seq(A385860(n),n=0..87);

Formula

a(n) <= A025428(n).

A376348 a(n) is the number of multisets with n primes with which an n-gon with perimeter prime(n) can be formed.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 7, 7, 12, 19, 19, 25, 44, 72, 72, 119, 147, 152, 234, 292, 435, 777, 920, 946, 1135, 1161, 1377, 3702, 4293, 5942, 5942, 10741, 10741, 14483, 18953, 22091, 28658, 37686, 37686, 63053, 63053, 72389, 72389, 132732, 233773, 265312, 265312, 300443, 373266
Offset: 3

Views

Author

Felix Huber, Oct 13 2024

Keywords

Comments

a(n) is the number of partitions of prime(n) into n prime parts < prime(n)/2.
First differs from A259254 at n=31: a(31) = 3702 but A259254(31) = 3703.

Examples

			a(7) = 2 because exactly the 2 partitions (2, 2, 2, 2, 3, 3, 3) and (2, 2, 2, 2, 2, 2, 5) have 7 prime parts and their sum is p(7) = 17.
		

Crossrefs

Programs

  • Maple
    A376348:=proc(n)
       local a,p,x,i;
       a:=0;
       p:=ithprime(n);
       for x from NumberTheory:-pi(p/n)+1 to NumberTheory:-pi(p/2) do
          a:=a+numelems(select(i->nops(i)=n-1 and andmap(isprime,i),combinat:-partition(ithprime(n)-ithprime(x),ithprime(x))))
       od;
       return a
    end proc;
    seq(A376348(n),n=3..42);
  • PARI
    a(n)={my(m=prime(n), p=primes(primepi((m-1)\2))); polcoef(polcoef(1/prod(i=1, #p, 1 - y*x^p[i], 1 + O(x*x^m)), m),n)} \\ Andrew Howroyd, Oct 13 2024

Extensions

a(43) onwards from Andrew Howroyd, Oct 13 2024
Previous Showing 11-15 of 15 results.