cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A254520 Möbius transform of A034676.

Original entry on oeis.org

1, 4, 9, 12, 25, 36, 49, 48, 72, 100, 121, 108, 169, 196, 225, 192, 289, 288, 361, 300, 441, 484, 529, 432, 600, 676, 648, 588, 841, 900, 961, 768, 1089, 1156, 1225, 864, 1369, 1444, 1521, 1200, 1681, 1764, 1849, 1452, 1800, 2116, 2209, 1728, 2352, 2400
Offset: 1

Views

Author

Álvar Ibeas, Jan 31 2015

Keywords

Comments

The Dirichlet convolution of a(n) and sigma(n) is sigma(n^2).

Crossrefs

Programs

  • PARI
    a(n) = n^2*sumdiv(n, d, if (issquare(d), moebius(sqrtint(d))/d)); \\ Michel Marcus, Feb 10 2015

Formula

a(n) = n^2 * Sum_{d^2 | n} (moebius(d) / d^2).
Multiplicative with a(p) = p^2; a(p^e) = p^(2e) - p^(2e-2), for e > 1.
Dirichlet g.f.: zeta(s-2) / zeta(2s-2).
Sum_{k=1..n} a(k) ~ 30 * n^3 / Pi^4. - Vaclav Kotesovec, Jan 11 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/p^2 + 1/(p^2 - 1)^2) = 1.681923034881403168503816690236967736500606659628336043348190538886262268... - Vaclav Kotesovec, Sep 20 2020
a(n) = n*A063659(n). - Ridouane Oudra, Jul 26 2025

A301511 Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k!), where psi() is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 1, 4, 14, 68, 362, 2224, 14940, 110348, 878600, 7518002, 68529122, 662709832, 6764329158, 72622813172, 817239648500, 9612724174088, 117878757097178, 1503660164683864, 19911519090176808, 273221610513382028, 3878513600608651636, 56873187579428449852, 860296560100458300892
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Exponential transform of A001615.

Examples

			E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 68*x^4/4! + 362*x^5/5! + 2224*x^6/6! + 14940*x^7/7! + ...
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; a[n_] := a[n] = SeriesCoefficient[Exp[Sum[psi[k] x^k/k!, {k, 1, n}]], {x, 0, n}]; Table[a[n] n!, {n, 0, 23}]
    psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; a[n_] := a[n] = Sum[psi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A001615(k)*x^k/k!).
Previous Showing 21-22 of 22 results.