cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A341365 Expansion of (1 / theta_4(x) - 1)^4 / 16.

Original entry on oeis.org

1, 8, 40, 156, 520, 1552, 4262, 10960, 26716, 62276, 139744, 303412, 640001, 1315832, 2644004, 5204044, 10052182, 19086348, 35672516, 65708116, 119409576, 214289116, 380068582, 666723748, 1157550524, 1990230968, 3390558072, 5726064688, 9590759624, 15938198484, 26289242026
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..34);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 34; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^4/16, {x, 0, nmax}], x] // Drop[#, 4] &
    nmax = 34; CoefficientList[Series[(1/16) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (1/16) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^4.
a(n) ~ A284286(n)/16. - Vaclav Kotesovec, Feb 20 2021

A341423 Number of positive solutions to (x_1)^2 + (x_2)^2 + (x_3)^2 + (x_4)^2 <= n^2.

Original entry on oeis.org

1, 5, 32, 94, 219, 437, 804, 1362, 2177, 3271, 4768, 6708, 9227, 12381, 16254, 20954, 26707, 33461, 41480, 50884, 61703, 74183, 88606, 104862, 123481, 144241, 167604, 193648, 222799, 254731, 290244, 329512, 372545, 419661, 470822, 526646, 587481, 653505
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(n=0, 0,
          add((s->`if`(s>n, 0, b(n-s, k-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 4):
    seq(a(n), n=2..39);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x] - 1)^4/(16 (1 - x)), {x, 0, n^2}], {n, 2, 39}]

Formula

a(n) is the coefficient of x^(n^2) in expansion of (theta_3(x) - 1)^4 / (16 * (1 - x)).

A347711 Number of compositions (ordered partitions) of n into at most 4 squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 8, 3, 5, 6, 6, 12, 2, 5, 16, 7, 8, 10, 15, 12, 3, 15, 14, 16, 12, 8, 30, 16, 1, 18, 23, 18, 17, 18, 21, 28, 8, 11, 42, 19, 15, 32, 30, 24, 5, 23, 39, 30, 20, 20, 48, 36, 6, 34, 44, 21, 36, 24, 36, 52, 2, 34, 60, 31, 23, 36, 66, 36
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..4} A337165(n,k). - Alois P. Heinz, Sep 10 2021
Previous Showing 11-13 of 13 results.