cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A064088 Generalized Catalan numbers C(5; n).

Original entry on oeis.org

1, 1, 6, 61, 766, 10746, 161376, 2537781, 41260086, 687927166, 11698135396, 202104763026, 3537486504556, 62595852983236, 1117926476207316, 20124876291104421, 364797768048805926, 6652740911381353206, 121975721251036497636, 2247064873245590484966, 41573071647518070152196
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=5, beta =1 (or alpha=1, beta=5).

Crossrefs

Cf. A064087 (C(4, n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (9-Sqrt(1-20*x))/(2*(x+4)) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    a[0] = 1; a[n_] := Sum[(n - m)*Binomial[n - 1 + m, m]*5^m/n, {m, 0, n - 1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 09 2013 *)
    CoefficientList[Series[(9-Sqrt[1-20*x])/(2*(x+4)), {x,0,30}], x] (* G. C. Greubel, May 02 2019 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-4*x^2)/(1+x)^2 +O(x^(n+1))), n)) /* Ralf Stephan */
    
  • Sage
    ( (9-sqrt(1-20*x))/(2*(x+4)) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: (1+5*x*c(5*x)/4)/(1+x/4) = 1/(1-x*c(5*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(5^m)/n, n >= 1, a(0) := 1.
a(n) = (-1/4)^n*(1 - 5*Sum_{k=0..n-1} C(k)*(-20)^k); with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*5^(n-k). - Philippe Deléham, Jan 19 2004
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
5, 5, 5, 0, 0, 0, ...
5, 5, 5, 5, 0, 0, ...
5, 5, 5, 5, 5, 0, ...
5, 5, 5, 5, 5, 5, ...
... (End)
Conjecture: 4*n*a(n) +(-79*n+120)*a(n-1) +10*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) ~ 4^n * 5^(n+1) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019

A064089 Generalized Catalan numbers C(6; n).

Original entry on oeis.org

1, 1, 7, 85, 1279, 21517, 387607, 7312789, 142648495, 2853691357, 58226571271, 1207062556261, 25351452769567, 538285926177325, 11535690316148215, 249189167966657845, 5420206822556721295
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=6, beta =1 (or alpha=1, beta=6).

Crossrefs

Cf. A064088 (C(5, n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (11 -Sqrt(1-24*x))/(2*(x+5)) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    CoefficientList[Series[(11 -Sqrt[1-24*x])/(2*(x+5)), {x, 0, 20}], x] (* G. C. Greubel, May 02 2019 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-5*x^2)/(1+x)^2+O(x^(n+1))), n)) /* Ralf Stephan */
    
  • PARI
    my(x='x+O('x^20)); Vec((11 -sqrt(1-24*x))/(2*(x+5))) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((11 -sqrt(1-24*x))/(2*(x+5))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: (1 + 6*x*c(6*x)/5)/(1+x/5) = 1/(1 - x*c(6*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(6^m)/n.
a(n) = (-1/5)^n*(1 - 6*Sum_{k=0..n-1} C(k)*(-30)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*6^(n-k). - Philippe Deléham, Jan 19 2004
Conjecture: 5*n*a(n) +(-119*n+180)*a(n-1) +12*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) ~ 2^(3*n + 1) * 3^(n+1) / (121*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019

A113647 Triangle of numbers related to the generalized Catalan sequence C(2;n+1)=A064062(n+1), n>=0.

Original entry on oeis.org

1, 1, 3, 1, 7, 13, 1, 15, 41, 67, 1, 31, 113, 247, 381, 1, 63, 289, 783, 1545, 2307, 1, 127, 705, 2271, 5361, 9975, 14589, 1, 255, 1665, 6207, 16929, 36879, 66057, 95235, 1, 511, 3841, 16255, 50113, 123871, 255985, 446455, 636925, 1, 1023, 8705, 41215, 141441
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

This triangle, called Y(2,1), appears in the totally asymmetric exclusion process for the (unphysical) values alpha=2, beta=1. See the Derrida et al. refs. given under A064094, where the triangle entries are called Y_{N,K} for given alpha and beta.
The main diagonal (M=1) gives the generalized Catalan sequence C(2,n):=A064062(n).
The diagonal sequences give A064062(n+1), A115137, A115150-A115153, for n+1>= M=1,..,6.

Examples

			Triangle begins:
  1;
  1,3;
  1,7,13;
  1,15,41,67;
  1,31,113,247,381;
  ...
113=a(4,3)= a(4,2) + 2*a(3,3)= 31 + 2*41.
		

Crossrefs

Row sums give A115136.

Formula

a(n, n+1)=A064062(n+1) (main diagonal with M=1); a(n, n-M+2)= a(n, n-M+1) + 2*a(n-1, n-M+2), M>=2; a(n, 1)=1; n>=0.
G.f. for diagonal sequence M=1: GY(1, x):=(2*c(2*x)-1)/(1+x) with c(x) g.f. of A000108 (Catalan); for M=2: GY(2, x)=(1-2*x)*GY(1, x)-1; for M>=3: GY(M, x)= GY(M-1, x) -2*x*GY(M-2, x) + x^(M-2).
G.f. for diagonal sequence M (solution to the above given recurrence): GY(M, x)= (x^(M-1)/(1+x))*( 2^(M+1)*x*(p(M, 2*x)-(2*x)*p(M+1, 2*x)*c(2*x))+1), with c(x) g.f. of A000108 (Catalan) and p(n, x):= -((1/sqrt(x))^(n+1))*S(n-1, 1/sqrt(x)) with Chebyshev's S(n, x) polynomials given in A049310.

A064090 Generalized Catalan numbers C(7; n).

Original entry on oeis.org

1, 1, 8, 113, 1982, 38886, 817062, 17981769, 409186310, 9549411950, 227307541448, 5497312072330, 134696099554276, 3336563455537768, 83419226227330722, 2102274863070771033, 53347639317495439302
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=7, beta =1 (or alpha=1, beta=7).

Crossrefs

Cf. A064089 (C(6, n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (13-Sqrt(1-28*x))/(2*(x+6)) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    a[0]=1; a[n_]:= Sum[(n-m)*Binomial[n-1+m, m]*7^m/n, {m, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jul 09 2013 *)
    CoefficientList[Series[(13 -Sqrt[1-28*x])/(2*(x+6)), {x, 0, 20}], x] (* G. C. Greubel, May 02 2019 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-6*x^2)/(1+x)^2 +O(x^(n+1))), n)) /* Ralf Stephan */
    
  • PARI
    my(x='x+O('x^20)); Vec((13-sqrt(1-28*x))/(2*(x+6))) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((13-sqrt(1-28*x))/(2*(x+6))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: (1+7*x*c(7*x)/6)/(1+x/6) = 1/(1-x*c(7*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(7^m)/n.
a(n) = (-1/6)^n*(1 - 7*Sum_{k=0..n-1} C(k)*(-42)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*7^(n-k). - Philippe Deléham, Jan 19 2004
Conjecture: 6*n*a(n) +(-167*n+252)*a(n-1) +14*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) ~ 4^n * 7^(n+1) / (169*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019

A064091 Generalized Catalan numbers C(8; n).

Original entry on oeis.org

1, 1, 9, 145, 2905, 65121, 1563561, 39322929, 1022586105, 27272680705, 741894295369, 20504949587409, 574176887116441, 16254518495907745, 464436319229036265, 13376293681432402545, 387925710986712480825
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1)= Y_{n}(n+1)= Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=8, beta =1 (or alpha=1, beta=8).

Crossrefs

Cf. A064090 (C(7, n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (15 - Sqrt(1-32*x))/(2*(x+7)) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    a[0]=1; a[n_]:= Sum[(n-m)*Binomial[n+m-1, m]*(8^m)/n, {m, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 21 2013 *)
    Table[FullSimplify[(-1)^(2*n)*2^(3+5*n)*(1/2*(2*n-1))! Hypergeometric2F1[1,1/2+n,2+n,-224]/(Sqrt[Pi]*(n+1)!)],{n,0,20}] (* Vaclav Kotesovec, Aug 13 2013 *)
    CoefficientList[Series[(15 -Sqrt[1-32*x])/(2*(x+7)), {x,0,20}], x] (* G. C. Greubel, May 02 2019 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-7*x^2)/(1+x)^2+O(x^(n+1))), n)) /* Ralf Stephan */
    
  • PARI
    my(x='x+O('x^20)); Vec((15 -sqrt(1-32*x))/(2*(x+7))) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((15 -sqrt(1-32*x))/(2*(x+7))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: (1 + 8*x*c(8*x)/7)/(1+x/7) = 1/(1 - x*c(8*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(8^m)/n.
a(n) = (-1/7)^n*(1 - 8*Sum_{k=0..n-1} C(k)*(-56)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*8^(n-k). - Philippe Deléham, Jan 19 2004
Conjecture: 7*n*a(n) +(-223*n+336)*a(n-1) +16*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) ~ 2^(5*n+3)/(225*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013

A064092 Generalized Catalan numbers C(9; n).

Original entry on oeis.org

1, 1, 10, 181, 4078, 102826, 2777212, 78571837, 2298558934, 68964092542, 2110472708140, 65620725560578, 2067160250751436, 65833929303952564, 2116166898185821792, 68565914052628406221, 2237022199842087256678
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=9, beta =1 (or alpha=1, beta=9).

Crossrefs

Cf. A064091 (C(8, n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (17 - Sqrt(1-36*x))/(2*(x+8)) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    a[0]=1; a[n_]:= Sum[(n-m)*Binomial[n-1+m, m]*9^m/n, {m, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jul 09 2013 *)
    CoefficientList[Series[(17 -Sqrt[1-36*x])/(2*(x+8)), {x, 0, 20}], x] (* G. C. Greubel, May 02 2019 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-8*x^2)/(1+x)^2+O(x^(n+1))), n)) /* Ralf Stephan */
    
  • PARI
    my(x='x+O('x^20)); Vec((17 -sqrt(1-36*x))/(2*(x+8))) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((17 -sqrt(1-36*x))/(2*(x+8))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: (1 + 9*x*c(9*x)/8)/(1+x/8) = 1/(1 - x*c(9*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(9^m)/n.
a(n) = (-1/8)^n*(1 - 9*Sum_{k=0..n-1} C(k)*(-72)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*9^(n-k). - Philippe Deléham, Jan 19 2004
Conjecture: 8*n*a(n) +(-287*n+432)*a(n-1) +18*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) ~ 4^n * 9^(n+1) / (289*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019

A064093 Generalized Catalan numbers C(10; n).

Original entry on oeis.org

1, 1, 11, 221, 5531, 154941, 4649451, 146150061, 4750427771, 158361063581, 5384626548491, 186023930383501, 6511108452179611, 230400987949757821, 8228844334672249131, 296245683962814194541, 10739133812893020645051
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=10, beta =1 (or alpha=1, beta=10).
In general, for m>=1, C(m; n) ~ m * (4*m)^n / ((2*m - 1)^2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 10 2019

Crossrefs

Cf. A064092 (C(9, n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (19 - Sqrt(1-40*x))/(2*(x+9)) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    CoefficientList[Series[(19 -Sqrt[1-40*x])/(2*(x+9)), {x, 0, 20}], x] (* G. C. Greubel, May 02 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((19 -sqrt(1-40*x))/(2*(x+9))) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((19 -sqrt(1-40*x))/(2*(x+9))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: (1 + 10*x*c(10*x)/9)/(1+x/9) = 1/(1 - x*c(10*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(10^m)/n.
a(n) = (-1/9)^n*(1 - 10*Sum_{k=0..n-1} C(k)*(-90)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*10^(n-k). - Philippe Deléham, Jan 19 2004
a(n) ~ 2^(3*n + 1) * 5^(n+1) / (361*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019

A094385 Triangle read by rows: T(n, k) = binomial(2*n, k-1)*binomial(2*n-k-1, n-k)/n for n, k >= 1, and T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 5, 0, 5, 20, 28, 14, 0, 14, 70, 135, 120, 42, 0, 42, 252, 616, 770, 495, 132, 0, 132, 924, 2730, 4368, 4004, 2002, 429, 0, 429, 3432, 11880, 23100, 27300, 19656, 8008, 1430, 0, 1430, 12870, 51051, 116688, 168300, 157080, 92820, 31824, 4862
Offset: 0

Views

Author

Philippe Deléham, Jun 03 2004, Jun 14 2007

Keywords

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,    2;
  0,   2,    6,     5;
  0,   5,   20,    28,    14;
  0,  14,   70,   135,   120,    42;
  0,  42,  252,   616,   770,   495,   132;
  0, 132,  924,  2730,  4368,  4004,  2002,  429;
  0, 429, 3432, 11880, 23100, 27300, 19656, 8008, 1430; ...
		

Crossrefs

Variant of A062991, unsigned and transposed.
See also A234950 for another version.
Columns: A000007 (k=0), 2*A001700 (k=1).
Diagonals: A002694 (k=n-1), A000108 (k=n).
Row sums: A064062 (generalized Catalan C(2; n)).

Programs

  • Magma
    A094385:= func< n,k | n eq 0 select 1 else Binomial(2*n, k-1)*Binomial(2*n-k-1, n-k)/n >;
    [A094385(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 26 2024
    
  • Mathematica
    T[n_, k_] := Binomial[2n, k-1] Binomial[2n-k-1, n-k]/n; T[0, 0] = 1;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018 *)
  • SageMath
    def A094385(n,k): return 1 if (n==0) else binomial(2*n,k-1)*binomial(2*n-k-1, n-k)//n
    flatten([[A094385(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 26 2024

Formula

T is given by [0, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.
Sum_{k = 0..n} T(n, k)*x^(n-k) = C(x+1; n), generalized Catalan numbers; see left diagonals of triangle A064094: A000012, A000108, A064062, A064063, A064087..A064093 for x = -1, 0, ..., 9, respectively.
From G. C. Greubel, Sep 26 2024: (Start)
T(n, 1) = A000108(n-1), n >= 1.
T(n, n-1) = A002694(n), n >= 1.
T(n, n) = A000108(n). (End)

Extensions

New name using a formula of the author by Peter Luschny, Sep 26 2024

A115154 Triangle of numbers related to the generalized Catalan sequence C(3;n+1) = A064063(n+1), n>=0.

Original entry on oeis.org

1, 1, 4, 1, 13, 25, 1, 40, 115, 190, 1, 121, 466, 1036, 1606, 1, 364, 1762, 4870, 9688, 14506, 1, 1093, 6379, 20989, 50053, 93571, 137089, 1, 3280, 22417, 85384, 235543, 516256, 927523, 1338790, 1, 9841, 77092, 333244, 1039873, 2588641, 5371210
Offset: 0

Views

Author

Wolfdieter Lang, Feb 23 2006

Keywords

Comments

This triangle, called Y(3,1), appears in the totally asymmetric exclusion process for the (unphysical) values alpha=3, beta=1. See the Derrida et al. refs. given under A064094, where the triangle entries are called Y_{N,K} for given alpha and beta.
The main diagonal (M=1) gives the generalized Catalan sequence C(3,n+1):=A064063(n+1).
The diagonal sequences give A064063(n+1), A115188-A115192 for n+1>= M=1,..,6.

Examples

			Triangle begins:
  1;
  1,   4;
  1,  13,  25;
  1,  40, 115,  190;
  1, 121, 466, 1036, 1606;
  ...
466 = a(4,3) = a(4,2) + 3*a(3,3) = 121 + 3*115.
		

Crossrefs

Row sums give A115187.

Formula

a(n,n+1)=A064063(n+1) (main diagonal with M=1); a(n,n-M+2)= a(n,n-M+1) + 3*a(n-1,n-M+2), M>=2; a(n,1)=1; n>=0.
G.f. for diagonal sequence M=1: GY(1,x):=(3*c(3*x)-1)/(2+x) with c(x) the o.g.f. of A000108 (Catalan); for M=2: GY(2,x)=(1-3*x)*GY(1,x)-1; for M>=3: GY(M,x)= GY(M-1,x) - 3*x*GY(M-2,x) + 2*x^(M-2).
G.f. for diagonal sequence M (solution to the above given recurrence): GY(M,x)= (x^(M-1)/(1+x))*( 3^(M+1)*x*(p(M,3*x)-(3*x)*p(M+1,3*x)*c(3*x))+1), with c(x) g.f. of A000108 (Catalan) and p(n,x):= -((1/sqrt(x))^(n+1))*S(n-1,1/sqrt(x)) with Chebyshev's S(n,x) polynomials given in A049310.

A115195 Triangle of numbers, called Y(1,2), related to generalized Catalan numbers A062992(n) = C(2;n+1) = A064062(n+1).

Original entry on oeis.org

1, 2, 3, 4, 10, 13, 8, 28, 54, 67, 16, 72, 180, 314, 381, 32, 176, 536, 1164, 1926, 2307, 64, 416, 1488, 3816, 7668, 12282, 14589, 128, 960, 3936, 11568, 26904, 51468, 80646, 95235, 256, 2176, 10048, 33184, 86992, 189928, 351220, 541690, 636925, 512, 4864
Offset: 0

Views

Author

Wolfdieter Lang, Feb 23 2006

Keywords

Comments

This triangle Y(1,2) appears in the totally asymmetric exclusion process for the (unphysical) values alpha=1, beta=2. See the Derrida et al. refs. given under A064094, where the triangle entries are called Y_{N,K} for given alpha and beta.
The main diagonal (M=1) gives the generalized Catalan sequence C(2,n+1):=A064062(n+1).
The diagonal sequences give A064062(n+1), 2*A084076, 4*A115194, 8*A115202, 16*A115203, 32*A115204 for n+1>= M=1,..,6.

Examples

			Triangle begins:
   1;
   2,  3;
   4, 10,  13;
   8, 28,  54,  67;
  16, 72, 180, 314, 381;
  ...
		

Crossrefs

Row sums give A084076.

Formula

G.f. m-th diagonal, m>=1: ((1 + 2*x*c(2*x))*(2*x*c(2*x))^m)/(2*x*(1+x)) with c(x) the o.g.f. of A000108 (Catalan).
Previous Showing 11-20 of 24 results. Next