cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A307823 The number of nonunitary abundant numbers below 10^n.

Original entry on oeis.org

0, 5, 75, 812, 8079, 81052, 808477, 8097357, 80939927, 809350234
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2019

Keywords

Examples

			Below 10^2 there are 5 nonunitary abundant numbers, 36, 48, 72, 80, and 96, thus a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ nusigma[k]>k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq

Formula

Conjecture: Lim_{n->oo} a(n)/10^n = 0.0809... is the density of nonunitary abundant numbers.

A327945 Nonunitary pseudoperfect numbers: numbers that are equal to the sum of a subset of their nonunitary divisors.

Original entry on oeis.org

24, 36, 48, 72, 80, 96, 108, 112, 120, 144, 160, 168, 180, 192, 200, 216, 224, 240, 252, 264, 288, 300, 312, 320, 324, 336, 352, 360, 384, 392, 396, 400, 408, 416, 432, 448, 456, 468, 480, 504, 528, 540, 552, 560, 576, 588, 600, 612, 624, 640, 648, 672, 684
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Comments

The nonunitary version of A005835.

Examples

			36 is in the sequence since its nonunitary divisors are 2, 3, 6, 12, 18 and 36 = 6 + 12 + 18.
		

Crossrefs

Supersequence of A064591.

Programs

  • Mathematica
    nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[s, n]], {n, 1, 700}]; s

A329882 Nonunitary superabundant numbers: numbers m such that nusigma(m)/m > nusigma(k)/k for all k < m, where nusigma(m) is the sum of nonunitary divisors of m (A048146).

Original entry on oeis.org

1, 4, 8, 16, 24, 36, 48, 72, 144, 288, 360, 432, 720, 1440, 1800, 2160, 3600, 7200, 10800, 15120, 21600, 25200, 50400, 75600, 151200, 302400, 453600, 529200, 831600, 1058400, 1663200, 2116800, 3175200, 3326400, 4989600, 5821200, 9979200, 11642400, 21621600
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Crossrefs

The nonunitary version of A004394.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; rm = -1; s = {}; Do[r = nusigma[n]/n; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10000}]; s

A329883 Nonunitary highly abundant numbers: numbers m such that nusigma(m) > nusigma(k) for all k < m, where s(n) is the sum of nonunitary divisors of n (A048146).

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 108, 120, 144, 180, 192, 216, 288, 360, 432, 504, 576, 648, 720, 864, 1008, 1080, 1296, 1440, 1728, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3456, 3528, 3600, 4320, 5040, 5400, 5760, 6048, 6480, 7056, 7200, 8640
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

The corresponding record values are 0, 2, 6, 8, 14, 24, 30, 41, 56, 62, 105, 120, 140, 144, 233, 246, 248, 348, 489, 630, 764, 840, ...

Crossrefs

The nonunitary version of A002093.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; num = -1; s = {}; Do[nu = nusigma[n]; If[nu > num, num = nu; AppendTo[s, n]], {n, 1, 10^4}]; s

A333928 Recursive abundant numbers: numbers k such that A333926(k) > 2*k.

Original entry on oeis.org

12, 18, 20, 30, 36, 42, 60, 66, 70, 78, 84, 90, 100, 102, 108, 114, 120, 126, 132, 138, 140, 144, 150, 156, 168, 174, 180, 186, 196, 198, 204, 210, 220, 222, 228, 234, 240, 246, 252, 258, 260, 270, 276, 282, 294, 300, 306, 308, 318, 324, 330, 336, 340, 342, 348
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Examples

			12 is a term since A333926(12) = 28 > 2 * 12.
		

Crossrefs

Analogous sequences: A005101, A034683 (unitary), A064597 (nonunitary), A129575 (exponential), A129656 (infinitary), A292982 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[350], recDivSum[#] > 2*# &]

A357605 Numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

36, 48, 72, 80, 96, 108, 120, 144, 160, 162, 168, 180, 192, 200, 216, 224, 240, 252, 264, 270, 280, 288, 300, 312, 320, 324, 336, 352, 360, 378, 384, 392, 396, 400, 408, 416, 432, 448, 450, 456, 468, 480, 486, 500, 504, 528, 540, 552, 560, 576, 588, 594, 600, 612
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least odd term is a(470) = A357607(1) = 4725.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 5, 92, 1011, 10160, 102125, 1022881, 10231151, 102249758, 1022781199, 10229781638, ... . Apparently, the asymptotic density of this sequence exists and equals 0.102... .
An analog of abundant numbers, in which the divisor sum is restricted to nonsquarefree divisors. - Peter Munn, Oct 26 2022

Examples

			36 is a term since A162296(36) = 79 > 2*36.
		

Crossrefs

Cf. A162296.
Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 1000], q]

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A357685 Numbers k such that A293228(k) > k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 114, 132, 138, 140, 156, 174, 186, 204, 210, 222, 228, 246, 258, 276, 282, 318, 330, 348, 354, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564, 570, 582, 606, 618, 636, 642, 654, 660, 678, 690
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 7, 79, 843, 8230, 83005, 826875, 8275895, 82790525, 827718858, 8276571394, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0827... .

Examples

			30 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15} and their sum is 42 > 30.
60 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15, 30} and their sum is 72 > 60.
		

Crossrefs

Disjoint union of A087248 and A357686.
Subsequence of A005101.

Programs

  • Mathematica
    s[n_] := Times @@ (1 + (f = FactorInteger[n])[[;; , 1]]) - If[AllTrue[f[[;;, 2]], # == 1 &], n, 0]; Select[Range[2, 1000], s[#] > # &]
  • PARI
    is(n) = {my(f = factor(n), s); s = prod(i=1, #f~, f[i,1]+1); if(n==1 || vecmax(f[,2]) == 1, s -= n); s > n};

A360525 Numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 180, 186, 204, 210, 222, 228, 246, 252, 258, 276, 282, 294, 300, 318, 330, 348, 354, 360, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A308127 at n = 15.
Analogous to abundant numbers (A005101) with A360522 instead of A000203.
Subsequence of A005101 because A360522(n) <= A000203(n) for all n.
The least odd term is a(1698) = A360526(1) = 15015.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 8, 95, 1135, 10890, 110867, 1104596, 11048123, 110534517, 1105167384, 11051009278, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1105...

Examples

			30 is a term since A360522(30) = 72 > 2*30.
		

Crossrefs

Subsequence of A005101.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1000], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}

A327946 Nonunitary pseudoperfect numbers (A327945) that equal to the sum of a subset of their nonunitary divisors in a single way.

Original entry on oeis.org

24, 36, 80, 112, 200, 312, 352, 392, 408, 416, 456, 552, 588, 684, 696, 744, 888, 984, 1032, 1088, 1116, 1128, 1216, 1272, 1332, 1416, 1464, 1472, 1548, 1608, 1692, 1704, 1752, 1856, 1896, 1908, 1936, 1984, 1992, 2124, 2136, 2196, 2288, 2328, 2412, 2424, 2472
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Comments

The nonunitary version of A064771.

Examples

			The nonunitary divisors of 36 are {2, 3, 6, 12, 18}, and {6, 12, 18} is the only subset that sums to 36.
		

Crossrefs

Programs

  • Mathematica
    nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c == 1, AppendTo[s, n]], {n, 1, 700}]; s
Previous Showing 11-20 of 23 results. Next