cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A379516 Denominators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 60, 5, 40, 360, 360, 120, 120, 120, 840, 140, 840, 14280, 42840, 42840, 42840, 8568, 34272, 34272, 34272, 11424, 148512, 49504, 7072, 35360, 106080, 318240, 159120, 1750320, 109395, 656370, 5250960, 26254800, 498841200, 498841200, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379514, A379515 (numerators).

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).

A335005 Decimal expansion of Pi^2/(12*zeta(3)).

Original entry on oeis.org

6, 8, 4, 2, 1, 6, 3, 8, 8, 8, 1, 0, 1, 0, 2, 9, 3, 7, 8, 6, 8, 3, 8, 2, 9, 2, 6, 9, 9, 2, 3, 9, 5, 9, 7, 0, 5, 6, 5, 4, 0, 6, 9, 5, 7, 3, 2, 6, 2, 0, 6, 9, 6, 1, 0, 3, 8, 6, 7, 6, 5, 9, 6, 3, 8, 4, 1, 7, 2, 4, 8, 9, 8, 9, 3, 8, 0, 0, 9, 7, 1, 1, 4, 1, 1, 0, 1
Offset: 0

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			0.68421638881010293786838292699239597056540695732620...
		

Crossrefs

Cf. A002117(zeta(3)), A013661 (zeta(2)), A034448, A064609, A072691 (Pi^2/12), A253905 (zeta(3)/zeta(2)).

Programs

  • Mathematica
    RealDigits[Pi^2/12/Zeta[3], 10, 100][[1]]
  • PARI
    Pi^2/(12*zeta(3)) \\ Michel Marcus, May 19 2020

Formula

Equals lim_{k->oo} A064609(k)/k^2, where A064609(k) is the partial sums of A034448, the sum of unitary divisors from 1 to k.
Equals zeta(2)/(2*zeta(3)) = A013661/(2*A002117) = A072691/A002117 = 1/(2*A253905).
Previous Showing 11-12 of 12 results.