cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A309272 Numbers m such that m divides A173290(m) = Sum_{k=1..m} psi(k), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 5, 15, 31, 40, 66, 81, 315, 966, 1398, 1768, 30166, 32335, 98734, 388033, 591597, 1375056, 14966304, 15160528, 50793208, 51302236, 99253376, 110994356, 230465053, 402340268, 497982399, 2027319577, 2879855394, 18450762682, 29922126368, 31711273834, 40583934786
Offset: 1

Views

Author

Amiram Eldar, Oct 23 2019

Keywords

Comments

The corresponding quotients are 1, 2, 4, 12, 24, 31, 51, 62, 240, 735, 1063, 1344, 22924, 24572, 75029, 294870, 449560, 1044918, 11373028, 11520620, 38598210, 38985025, 75423522, 84345597, 175132440, 305741942, 378421246, 1540578144, 2188427680, 14020898356, 22738089456, 24097678498, 30840092321, ...

Examples

			2 is in the sequence since psi(1) + psi(2) = 1 + 3 = 4 is divisible by 2.
5 is in the sequence since psi(1) + psi(2) + ... + psi(5) = 1 + 3 + 4 + 6 + 6 = 20 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); seq = {}; s = 0; Do[s += psi[n]; If[Divisible[s, n], AppendTo[seq, n]], {n, 1, 10^4}]; seq

Extensions

a(31)-a(33) from Giovanni Resta, Oct 24 2019

A339009 Numbers k such that the average number of odd divisors of {1..k} is an integer.

Original entry on oeis.org

1, 2, 165, 170, 1274, 9437, 69720, 69732, 69734, 69736, 515230, 515236, 515246, 28132043, 28132063, 28132079
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2020

Keywords

Comments

Numbers k that divide A060831(k) where A060831(k) = Sum_{j=1..k} A001227(j).
The sequence also includes: 83860580242, 4578632504347, 4578632504465, 4578632504515. - Daniel Suteu, Nov 24 2020

Examples

			165 is in the sequence because the average number of odd divisors of {1..165} is an integer: A060831(165) / 165 = 495 / 165 = 3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{c = 0, k = 1, sum = 0, seq = {}}, While[c < n, sum += DivisorSigma[0, k/2^IntegerExponent[k, 2]]; If[Divisible[sum, k], c++; AppendTo[seq, k]]; k++]; seq]; s[13] (* Amiram Eldar, Nov 18 2020 *)
  • PARI
    f(n) = my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2; \\ A060831
    isok(k) = (f(k) % k) == 0; \\ Michel Marcus, Nov 25 2020

A355541 Numbers k such that A061201(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 31, 1393, 5012, 7649, 50235, 147296, 426606, 611769, 3491681, 9324642, 11815109, 53962364, 82680301, 96789197, 230882246, 378444764, 1489280093, 1489280606, 3651325650, 5891877914, 5891877947, 5891877966, 58604540872
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that the mean value of A007425 over the range 1..k is an integer.
The corresponding quotients are 1, 2, 4, 9, 32, 43, 47, 67, 80, 94, 99, 125, 141, 145, 172, 180, 183, 200, 210, 239, 239, 259, 270, 270, 270, 326, ... .
a(27) > 7.5*10^10, if it exists.

Examples

			7 is a term since A061201(7) = 28 = 4 * 7 is divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2;  d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; sum = 0; seq = {}; Do[sum += d3[n]; If[Divisible[sum, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq

A355542 Numbers k such that A272718(k) is divisible by k.

Original entry on oeis.org

1, 2, 3, 11, 13, 50, 81, 96, 395, 640, 59136, 65719, 632621, 1342813, 2137073, 2755370, 3446370, 10860093, 321939569, 1872591111, 8858043355
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that the mean value of A018804 over the range 1..k is an integer.
The corresponding quotients are 1, 2, 3, 13, 16, 80, 141, 172, 865, 1500, 219530, 246058, 2804048, 6259092, 10263121, 13445321, 17051542, 57521176, 2036840289, 12849666590, 64967828053, ... .
a(22) > 6.5*10^10, if it exists.

Examples

			11 is a term since A061201(11) = 143 = 11 * 13 is divisible by 11.
		

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := (e*(p-1)/p+1)*p^e; pillai[1] = 1; pillai[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sum = 0; Do[sum += pillai[n]; If[Divisible[sum, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq
Previous Showing 11-14 of 14 results.