cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 65 results. Next

A375127 The anti-run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 1, 7, 8, 4, 10, 5, 1, 1, 3, 15, 16, 8, 4, 9, 2, 10, 2, 11, 1, 1, 6, 3, 3, 3, 7, 31, 32, 16, 8, 17, 36, 4, 4, 19, 2, 2, 42, 21, 2, 2, 5, 23, 1, 1, 1, 3, 1, 6, 1, 7, 3, 3, 14, 7, 7, 7, 15, 63, 64, 32, 16, 33, 8, 8, 8, 35, 4, 36, 18, 9, 4, 4, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of anti-runs of the n-th composition in standard order.
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2). This is the 42nd composition in standard order, so a(346) = 42.
		

Crossrefs

Positions of elements of A233564 are A374638, counted by A374518.
Positions of elements of A272919 are A374519, counted by A374517.
Ranks of rows of A374515.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transform is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],UnsameQ]],{n,0,100}]

Formula

A000120(a(n)) = A333381(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374516(n).

A374741 Sum of leaders of weakly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 3, 1, 4, 3, 2, 2, 4, 3, 3, 1, 5, 4, 3, 3, 5, 2, 4, 2, 5, 4, 3, 3, 4, 3, 3, 1, 6, 5, 4, 4, 3, 3, 5, 3, 6, 5, 2, 2, 5, 4, 4, 2, 6, 5, 4, 4, 6, 3, 5, 3, 5, 4, 3, 3, 4, 3, 3, 1, 7, 6, 5, 5, 4, 4, 6, 4, 7, 3, 3, 3, 6, 5, 5, 3, 7, 6, 5, 5, 5, 2, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so a(1234567) is 3+2+2+5 = 12.
		

Crossrefs

For length instead of sum we have A124765.
Other types of runs are A373953, A374516, A374684, A374758.
The opposite is A374630.
Row-sums of A374740, opposite A374629.
Counting compositions by this statistic gives A374748, opposite A374637.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564, counted by A032020.
- Constant compositions are ranked by A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

A374758 Sum of leaders of strictly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 4, 3, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 5, 6, 3, 5, 5, 6, 5, 6, 5, 5, 4, 5, 5, 6, 5, 4, 5, 6, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 7, 6, 5, 6, 4, 4, 6, 6, 7, 6, 5, 4, 6, 5, 6, 6, 7, 6, 5, 6, 7, 6, 6
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The maximal strictly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)) with leaders (3,2,2,2,5,1,1), so a(1234567) = 16.
		

Crossrefs

Row sums of A374757.
For leaders of constant runs we have A373953.
For leaders of anti-runs we have A374516.
For leaders of weakly increasing runs we have A374630.
For length instead of sum we have A124769.
The opposite version is A374684, sum of A374683 (length A124768).
The case of partitions ranked by Heinz numbers is A374706.
The weak version is A374741, sum of A374740 (length A124765).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Greater]],{n,0,100}]

A374684 Sum of leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 1, 3, 4, 4, 4, 4, 1, 2, 2, 4, 5, 5, 5, 5, 2, 5, 3, 5, 1, 2, 3, 3, 2, 3, 3, 5, 6, 6, 6, 6, 6, 6, 4, 6, 2, 3, 6, 6, 3, 4, 4, 6, 1, 2, 3, 3, 1, 4, 2, 4, 2, 3, 4, 4, 3, 4, 4, 6, 7, 7, 7, 7, 7, 7, 5, 7, 3, 7, 7, 7, 4, 5, 5, 7, 2, 3, 4, 4, 4, 7, 5
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)) with leaders (3,2,1,2,1,1,1,1), so a(1234567) = 12.
		

Crossrefs

The weak version is A374630.
Row-sums of A374683.
The opposite version is A374758.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Run-length transform is A333627.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Cf. A374251 (sums A373953), A374515 (sums A374516), A374740 (sums A374741).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Less]],{n,0,100}]

A374678 Number of integer compositions of n whose leaders of maximal anti-runs are not distinct.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 15, 32, 70, 144, 311, 653, 1354, 2820, 5850, 12054, 24810, 50923, 104206, 212841, 433919, 882930, 1793810, 3639248, 7373539, 14921986
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The anti-runs of y = (1,1,2,2) are ((1),(1,2),(2)) with leaders (1,1,2) so y is counted under a(6).
The a(0) = 0 through a(6) = 15 compositions:
  .  .  (11)  (111)  (22)    (113)    (33)
                     (112)   (221)    (114)
                     (1111)  (1112)   (222)
                             (1121)   (1113)
                             (1211)   (1122)
                             (2111)   (1131)
                             (11111)  (1311)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

For constant runs we have A335548, complement A274174, ranks A374249.
The complement is counted by A374518, ranks A374638.
For weakly increasing runs we have complement A374632, ranks A374768.
Compositions of this type are ranked by A374639.
For identical instead of distinct leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
A003242 counts anti-runs, ranks A333489.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A331581 Maximum part of the n-th integer partition in graded reverse-lexicographic order (A080577); a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 08 2020

Keywords

Comments

The first partition ranked by A080577 is (); there is no zeroth partition.

Examples

			The sequence of all partitions in graded reverse-lexicographic order begins as follows. The terms are the initial parts.
  ()         (3,2)        (2,1,1,1,1)    (2,2,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)  (2,1,1,1,1,1)
  (2)        (2,2,1)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (2,1,1,1)    (6,1)          (8)
  (3)        (1,1,1,1,1)  (5,2)          (7,1)
  (2,1)      (6)          (5,1,1)        (6,2)
  (1,1,1)    (5,1)        (4,3)          (6,1,1)
  (4)        (4,2)        (4,2,1)        (5,3)
  (3,1)      (4,1,1)      (4,1,1,1)      (5,2,1)
  (2,2)      (3,3)        (3,3,1)        (5,1,1,1)
  (2,1,1)    (3,2,1)      (3,2,2)        (4,4)
  (1,1,1,1)  (3,1,1,1)    (3,2,1,1)      (4,3,1)
  (5)        (2,2,2)      (3,1,1,1,1)    (4,2,2)
  (4,1)      (2,2,1,1)    (2,2,2,1)      (4,2,1,1)
Triangle begins:
  0
  1
  2 1
  3 2 1
  4 3 2 2 1
  5 4 3 3 2 2 1
  6 5 4 4 3 3 3 2 2 2 1
  7 6 5 5 4 4 4 3 3 3 3 2 2 2 1
  8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1
		

Crossrefs

Row lengths are A000041.
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
The version for compositions is A065120 or A333766.
Reverse-lexicographically ordered partitions are A080577.
Distinct parts of these partitions are counted by A115623.
Lexicographically ordered partitions are A193073.
Colexicographically ordered partitions are A211992.
Lengths of these partitions are A238966.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Prepend[First/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,8}],0]

Formula

a(n) = A061395(A129129(n - 1)).

A375137 Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 1-32.

Original entry on oeis.org

50, 98, 101, 114, 178, 194, 196, 197, 202, 203, 210, 226, 229, 242, 306, 324, 354, 357, 370, 386, 388, 389, 393, 394, 395, 402, 404, 405, 406, 407, 418, 421, 434, 450, 452, 453, 458, 459, 466, 482, 485, 498, 562, 610, 613, 626, 644, 649, 690, 706, 708, 709
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
These are also numbers k such that the maximal weakly increasing runs in the k-th composition in standard order do not have weakly decreasing leaders, where the leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The reverse version (A375138) ranks compositions matching the dashed pattern 23-1.

Examples

			Composition 102 is (1,3,1,2), which matches 1-3-2 but not 1-32.
Composition 210 is (1,2,3,2), which matches 1-32 but not 132.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The terms together with corresponding compositions begin:
   50: (1,3,2)
   98: (1,4,2)
  101: (1,3,2,1)
  114: (1,1,3,2)
  178: (2,1,3,2)
  194: (1,5,2)
  196: (1,4,3)
  197: (1,4,2,1)
  202: (1,3,2,2)
  203: (1,3,2,1,1)
  210: (1,2,3,2)
  226: (1,1,4,2)
  229: (1,1,3,2,1)
  242: (1,1,1,3,2)
		

Crossrefs

The complement is too dense, but counted by A189076.
The non-dashed version is A335480, reverse A335482.
For leaders of identical runs we have A335485, reverse A335486.
For identical leaders we have A374633, counted by A374631.
Compositions of this type are counted by A374636.
For distinct leaders we have A374768, counted by A374632.
The reverse version is A375138, counted by A374636.
For leaders of strictly increasing runs we have A375139, counted by A375135.
Matching 1-21 also gives A375295, counted by A375140 (complement A188920).
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x
    				

A228366 Toothpick sequence from a diagram of compositions of the positive integers (see Comments lines for definition).

Original entry on oeis.org

0, 2, 6, 8, 15, 17, 21, 23, 35, 37, 41, 43, 50, 52, 56, 58, 79, 81, 85, 87, 94, 96, 100, 102, 114, 116, 120, 122, 129, 131, 135, 137, 175, 177, 181, 183, 190, 192, 196, 198, 210, 212, 216, 218, 225, 227, 231, 233, 254, 256, 260, 262, 269, 271, 275
Offset: 0

Views

Author

Omar E. Pol, Aug 22 2013

Keywords

Comments

In order to construct this sequence we use the following rules:
We start in the first quadrant of the square grid with no toothpicks, so a(0) = 0.
At stage n we place the smallest possible number of toothpicks of length 1 connected by their endpoints in horizontal direction starting from the grid point (0, n) such that the x-coordinate of the exposed endpoint of the last toothpick is not equal to the x-coordinate of any outer corner of the structure. Then we place toothpicks of length 1 connected by their endpoints in vertical direction, starting from the exposed toothpick endpoint, downward up to touch the structure or up to touch the x-axis.
The sequence gives the number of toothpicks after n stages. A228367 (the first differences) gives the number of toothpicks added at the n-th stage.
Note that the number of toothpick of added at n-th stage in horizontal direction is also A001511(n) and the number of toothpicks added at n-th stage in vertical direction is also A006519(n). Also counting both the x-axis and the y-axis we have that A001511(n) is also the largest part of the n-th region of the diagram and A006519(n) is also the number of parts of the n-th region of the diagram.
After 2^k stages a new section of the structure is completed, so the structure can be interpreted as a diagram of the 2^(k-1) compositions of k in colexicographic order, if k >= 1 (see A228525). The infinite diagram can be interpreted as a table of compositions of the positive integers.

Examples

			Illustration of initial terms (n = 1..8):
.                                                _ _ _ _
.                                        _       _      |
.                                _ _     _|_     _|_    |
.                        _       _  |    _  |    _  |   |
.                _ _ _   _|_ _   _|_|_   _|_|_   _|_|_  |
.          _     _    |  _    |  _    |  _    |  _    | |
.    _ _   _|_   _|_  |  _|_  |  _|_  |  _|_  |  _|_  | |
._   _  |  _  |  _  | |  _  | |  _  | |  _  | |  _  | | |
. |   | |   | |   | | |   | | |   | | |   | | |   | | | |
.
.2    6     8      15      17      21      23       35
.
After 16 stages there are 79 toothpicks in the structure which represents the compositions of 5 in colexicographic order as shown below:
-------------------------------
n     Diagram      Composition
-------------------------------
.     _ _ _ _ _
16    _        |   5
15    _|_      |   1+4
14    _  |     |   2+3
13    _|_|_    |   1+1+3
12    _    |   |   3+2
11    _|_  |   |   1+2+2
10    _  | |   |   2+1+2
9     _|_|_|_  |   1+1+1+2
8     _      | |   4+1
7     _|_    | |   1+3+1
6     _  |   | |   2+2+1
5     _|_|_  | |   1+1+2+1
4     _    | | |   3+1+1
3     _|_  | | |   1+2+1+1
2     _  | | | |   2+1+1+1
1      | | | | |   1+1+1+1+1
.
		

Crossrefs

Programs

  • Python
    def A228366(n): return sum(((m:=(i>>1)+1)&-m).bit_length() if i&1 else (m:=i>>1)&-m for i in range(1,2*n+1)) # Chai Wah Wu, Jul 15 2022

Formula

a(n) = sum_{k=1..n} (A001511(k) + A006519(k)), n >= 1.
a(n) = A005187(n) + A065120(n-1), n >= 1.
a(n) = A228370(2n).

A374640 Number of integer compositions of n whose leaders of maximal anti-runs are not identical.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 18, 43, 96, 211, 463, 992, 2112, 4462, 9347, 19495, 40480, 83690, 172478, 354455, 726538, 1486024, 3033644, 6182389, 12580486
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(7) = 18 compositions:
  .  .  .  .  (211)  (122)   (411)    (133)
                     (311)   (1122)   (322)
                     (2111)  (1221)   (511)
                             (2112)   (1222)
                             (2211)   (2113)
                             (3111)   (2311)
                             (21111)  (3112)
                                      (3211)
                                      (4111)
                                      (11122)
                                      (11221)
                                      (12211)
                                      (21112)
                                      (21121)
                                      (21211)
                                      (22111)
                                      (31111)
                                      (211111)
		

Crossrefs

For partitions instead of compositions we have A239955.
The complement is counted by A374517, ranks A374519.
Compositions of this type are ranked by A374520, complement A374519.
For distinct instead of identical leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
A003242 counts anti-runs, ranks A333489.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374520 Numbers k such that the leaders of maximal anti-runs in the k-th composition in standard order (A066099) are not identical.

Original entry on oeis.org

11, 19, 23, 26, 35, 39, 43, 46, 47, 53, 58, 67, 71, 74, 75, 78, 79, 83, 87, 91, 92, 93, 94, 95, 100, 106, 107, 117, 122, 131, 135, 138, 139, 142, 143, 147, 149, 151, 154, 155, 156, 157, 158, 159, 163, 164, 167, 171, 174, 175, 179, 183, 184, 185, 186, 187, 188
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with corresponding compositions begins:
  11: (2,1,1)
  19: (3,1,1)
  23: (2,1,1,1)
  26: (1,2,2)
  35: (4,1,1)
  39: (3,1,1,1)
  43: (2,2,1,1)
  46: (2,1,1,2)
  47: (2,1,1,1,1)
  53: (1,2,2,1)
  58: (1,1,2,2)
  67: (5,1,1)
  71: (4,1,1,1)
  74: (3,2,2)
  75: (3,2,1,1)
  78: (3,1,1,2)
  79: (3,1,1,1,1)
  83: (2,3,1,1)
  87: (2,2,1,1,1)
  91: (2,1,2,1,1)
		

Crossrefs

For leaders of maximal constant runs we have the complement of A272919.
Positions of non-constant rows in A374515.
The complement is A374519, counted by A374517.
For distinct instead of identical leaders we have A374639, counted by A374678, complement A374638, counted by A374518.
Compositions of this type are counted by A374640.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!SameQ@@First/@Split[stc[#],UnsameQ]&]
Previous Showing 31-40 of 65 results. Next