A323812 a(n) = n*Fibonacci(n-2) + ((-1)^n + 1)/2.
1, 3, 5, 10, 19, 35, 65, 117, 211, 374, 661, 1157, 2017, 3495, 6033, 10370, 17767, 30343, 51681, 87801, 148831, 251758, 425065, 716425, 1205569, 2025675, 3399005, 5696122, 9534331, 15941099, 26625281, 44426877, 74062507, 123360230, 205303933, 341416205, 567353377, 942154863, 1563526761
Offset: 2
Keywords
Examples
11011001 is a winning string because 110{11}001 -> 11{000}1 -> {111} -> null. Its complement, 00100110 is also a winning string because 001{00}110 -> 00{111}0 -> {000} -> null.
Links
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials for same game, pdf.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Crossrefs
Programs
-
Mathematica
Table[n Fibonacci[n-2]+((-1)^n+1)/2,{n,2,40}] (* Harvey P. Dale, Sep 17 2019 *)
Formula
a(n) = A309874(n)/2 for n >= 2.
Comments