cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A322359 Least common multiple of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n.

Original entry on oeis.org

1, 3, 4, 3, 12, 12, 24, 3, 4, 36, 60, 12, 84, 24, 24, 3, 144, 12, 180, 36, 96, 180, 264, 12, 12, 84, 4, 24, 420, 72, 480, 3, 240, 432, 48, 12, 684, 180, 168, 36, 840, 96, 924, 180, 24, 792, 1104, 12, 24, 36, 288, 84, 1404, 12, 360, 24, 720, 1260, 1740, 72, 1860, 480, 96, 3, 336, 720, 2244, 432, 1056, 144, 2520, 12
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, LCM[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322359(n) = lcm(A048250(n), A173557(n));

Formula

a(n) = lcm(A048250(n), A173557(n)).
a(n) = A322360(n)/A066086(n).

A126865 a(n) = gcd(Product_{p|n} (p+1)^b(p,n), Product_{p|n} (p-1)^b(p,n)), where the products are over the distinct primes, p, that divide n and p^b(p,n) is the highest power of p dividing n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 6, 8, 1, 2, 4, 2, 2, 4, 2, 2, 2, 4, 6, 8, 6, 2, 8, 2, 1, 4, 2, 24, 4, 2, 6, 8, 2, 2, 12, 2, 2, 16, 2, 2, 2, 4, 4, 8, 6, 2, 8, 8, 6, 4, 2, 2, 8, 2, 6, 8, 1, 12, 4, 2, 2, 4, 24, 2, 4, 2, 6, 16, 18, 12, 24, 2, 2, 16, 2, 2, 12, 4, 6, 8, 2, 2, 16, 8, 2, 4, 2, 24, 2, 2, 12, 8
Offset: 1

Views

Author

Leroy Quet, Mar 15 2007

Keywords

Comments

First occurrence of k or 0 if not possible (including all odd primes k): 2, 1, 0, 9, 0, 14, 0, 15, 0, 0, 0, 42, 0, 0, 0, 45, 0, 76, 0, 589, 0, 0, 0, 35, 0, 0, 0, 4381, 0, 0, ..., . - Robert G. Wilson v, Sep 08 2007

Examples

			400 = 2^4 * 5^2. So a(400) = gcd((2+1)^4 * (5+1)^2, (2-1)^4 * (5-1)^2) = gcd(2916, 16) = 4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{fi = FactorInteger@n}, GCD[Times @@ ((First /@ fi - 1)^Last /@ fi), Times @@ ((First /@ fi + 1)^Last /@ fi)]]; Array[f, 99] (* Robert G. Wilson v, Sep 08 2007 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A126865(n) = gcd(A003958(n),A003959(n)); \\ Antti Karttunen, Dec 17 2018

Formula

From Antti Karttunen, Dec 17 2018: (Start)
a(n) = gcd(A003958(n), A003959(n)).
a(A007947(n)) = A066086(n).
(End)

Extensions

More terms from Robert G. Wilson v, Sep 08 2007

A322354 Greatest common divisor of product p and product (p+2), where p ranges over distinct prime divisors of n; a(n) = gcd(A007947(n), A166590(A007947(n))).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 5, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 10, 1, 2, 1, 2, 7, 2, 1, 2, 3, 2, 1, 6, 1, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 10, 1, 2, 3, 2, 5, 2, 1, 2, 1, 14, 1, 2, 1, 2, 5, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 10, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ Power @@@ ({#[[1]] + 2, #[[2]]} & /@ FactorInteger[n])]; rad[n_] := Times @@ (First@# & /@ FactorInteger@n); a[n_] := GCD[rad[n], f[rad[n]]]; Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
    A322362(n) = gcd(n, A166590(n));
    A007947(n) = factorback(factorint(n)[, 1]);
    A322354(n) = A322362(A007947(n));
    \\ Alternatively as:
    A322354(n) = gcd(A007947(n), A166590(A007947(n)));

Formula

a(n) = A322362(A007947(n)) = gcd(A007947(n), A166590(A007947(n))).
a(n) = A322356(n) * A322357(n).

A342459 a(n) = gcd(A048250(n), A342001(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 1, 3, 8, 1, 1, 1, 1, 6, 2, 1, 1, 1, 2, 3, 1, 8, 1, 1, 1, 1, 2, 1, 12, 2, 1, 3, 8, 1, 1, 1, 1, 12, 1, 1, 1, 2, 2, 9, 4, 14, 1, 3, 8, 1, 2, 1, 1, 2, 1, 3, 1, 3, 6, 1, 1, 18, 2, 1, 1, 1, 1, 3, 1, 20, 6, 1, 1, 2, 4, 1, 1, 2, 2, 3, 8, 1, 1, 1, 4, 24, 2, 1, 24, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A342458(n) / A003557(n) = gcd(A048250(n), A342001(n)).
a(n) = A342001(n) / A342919(n).

A323406 Greatest common divisor of Product (p_i^e_i)-1 and Product (p_i^e_i)+1, when n = Product (p_i^e_i): a(n) = gcd(A047994(n), A034448(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 2, 2, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 30, 4, 2, 2, 2, 2, 6, 8, 2, 2, 2, 8, 6, 4, 2, 2, 24, 2, 6, 16, 1, 12, 4, 2, 6, 4, 24, 2, 2, 2, 6, 8, 2, 12, 24, 2, 6, 2, 2, 2, 4, 4, 6, 8, 2, 2, 4, 8, 6, 4, 2, 24, 2, 2, 6, 40, 2, 2, 8, 2, 42, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A034448(n) = { my(f=factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323406(n) = gcd(A034448(n), A047994(n));

Formula

a(n) = gcd(A034448(n), A047994(n)), where A034448 is unitary sigma, and A047994 is unitary phi.
Previous Showing 11-15 of 15 results.