cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 105 results. Next

A387111 Number of ways to choose a sequence of distinct positive integers, one in the initial interval of each prime index of n.

Original entry on oeis.org

1, 1, 2, 0, 3, 1, 4, 0, 2, 2, 5, 0, 6, 3, 4, 0, 7, 0, 8, 0, 6, 4, 9, 0, 6, 5, 0, 0, 10, 1, 11, 0, 8, 6, 9, 0, 12, 7, 10, 0, 13, 2, 14, 0, 2, 8, 15, 0, 12, 2, 12, 0, 16, 0, 12, 0, 14, 9, 17, 0, 18, 10, 4, 0, 15, 3, 19, 0, 16, 4, 20, 0, 21, 11, 4, 0, 16, 4, 22
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			The prime indices of 75 are (2,3,3), with initial intervals ({1,2},{1,2,3},{1,2,3}), with choices (1,2,3), (1,3,2), (2,1,3), (2,3,1), so a(75) = 4.
		

Crossrefs

Allowing repeated partitions gives A003963.
For constant instead of distinct we have A055396.
For multiset systems see A355529, A355744, A367771, set systems A367901-A367905.
For divisors we have A355739, zeros A355740, strict case of A355731.
For prime factors we have A355741, prime powers A355742, weakly increasing A355745.
For integer partitions we have A387110.
Positions of nonzero terms are A387112 (choosable).
Positions of 0 are A387134 (non-choosable).
A001414 adds up distinct prime divisors, counted by A001221.
A061395 gives greatest prime index.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Range/@prix[n]],UnsameQ@@#&]],{n,100}]

A380986 Product of prime indices of n (with multiplicity) minus product of distinct prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 12, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 300 are {1,1,2,3,3}, so a(300) = 18 - 6 = 12.
		

Crossrefs

Positions of nonzeros are A038838.
For length instead of product we have A046660.
For factors instead of indices we have A066503, see A007947 (squarefree kernel).
For sum of factors instead of product of indices we have A280292, see A280286, A381075.
For quotient instead of difference we have A290106, for factors A003557.
For sum instead of product we have A380955 (firsts A380956, sorted A380957).
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists the squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@prix[n]-Times@@Union[prix[n]],{n,100}]

Formula

a(n) = A003963(n) - A156061(n).

A381434 Numbers appearing only once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 22, 27, 28, 32, 33, 35, 40, 44, 45, 50, 55, 56, 64, 75, 77, 80, 81, 88, 98, 99, 100, 112, 128, 130, 135, 160, 170, 175, 176, 182, 190, 195, 196, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   20: {1,1,3}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434 (this), conjugate A381540
- numbers appearing more than once are A381435, conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]==1&]

Formula

The complement is A381433 U A381435.

A381438 Triangle read by rows where T(n>0,k>0) is the number of integer partitions of n whose section-sum partition ends with k.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 2, 1, 0, 2, 3, 1, 0, 0, 3, 4, 1, 2, 0, 0, 4, 7, 2, 1, 0, 0, 0, 5, 9, 4, 1, 2, 0, 0, 0, 6, 13, 4, 4, 1, 0, 0, 0, 0, 8, 18, 6, 3, 2, 3, 0, 0, 0, 0, 10, 26, 9, 5, 2, 2, 0, 0, 0, 0, 0, 12, 32, 12, 8, 4, 2, 4, 0, 0, 0, 0, 0, 15
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2025

Keywords

Comments

The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Triangle begins:
   1
   1  1
   1  0  2
   2  1  0  2
   3  1  0  0  3
   4  1  2  0  0  4
   7  2  1  0  0  0  5
   9  4  1  2  0  0  0  6
  13  4  4  1  0  0  0  0  8
  18  6  3  2  3  0  0  0  0 10
  26  9  5  2  2  0  0  0  0  0 12
  32 12  8  4  2  4  0  0  0  0  0 15
  47 16 11  4  3  2  0  0  0  0  0  0 18
  60 23 12  8  3  2  5  0  0  0  0  0  0 22
  79 27 20  7  9  4  3  0  0  0  0  0  0  0 27
 Row n = 9 counts the following partitions:
  (711)        (522)    (333)     (441)  .  .  .  .  (9)
  (6111)       (4221)   (3321)                       (81)
  (5211)       (3222)   (32211)                      (72)
  (51111)      (22221)  (222111)                     (63)
  (4311)                                             (621)
  (42111)                                            (54)
  (411111)                                           (531)
  (33111)                                            (432)
  (321111)
  (3111111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Last column (k=n) is A000009.
Row sums are A000041.
Row sums without the last column (k=n) are A047967.
For first instead of last part we have A116861, rank A066328.
First column (k=1) is A241131 shifted right and starting with 1 instead of 0.
Using Heinz numbers, this statistic is given by A381437.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Section-sum partition: A381431, A381432, A381433, A381434, A381435, A381436.
Look-and-Say partition: A048767, A351294, A351295, A381440.

Programs

  • Mathematica
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Length[Select[IntegerPartitions[n],k==Last[egs[#]]&]],{n,15},{k,n}]

A374246 Number of prime factors of n counted with multiplicity (A001222) minus the greatest number of runs possible in a permutation of them (A373957).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2024

Keywords

Comments

a(n) = 0 iff n has separable prime factors (A335433). A multiset is separable iff it has a permutation that is an anti-run (meaning there are no adjacent equal parts).

Examples

			The runs of the 4 permutations of the prime factors of 24 are:
  ((2,2,2),(3))
  ((2,2),(3),(2))
  ((2),(3),(2,2))
  ((3),(2,2,2))
The longest have length 3, so a(24) = 4 - 3 = 1.
		

Crossrefs

Using the minimum instead of maximum number of runs gives A046660.
Positions of first appearances are A151821 (powers of 2 except 2 itself).
Positions of positive terms are A335448, complement A335433.
This is an opposite version of A373957.
The sister-sequence A374247 uses A001221 instead of A001222.
This is the number of zeros at the end of row n of A374252.
A001221 counts distinct prime factors, A001222 with multiplicity.
A008480 counts permutations of prime factors.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A304038 is run-compression of prime indices, row-sums A066328.
A374250 maximizes sum of run-compression, for indices A373956.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{}, Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[PrimeOmega[n]-Max@@Table[Length[Split[y]], {y,Permutations[prifacs[n]]}],{n,100}]

Formula

a(n) = A001222(n) - A373957(n).

A375400 Heinz number of the multiset of minima of maximal anti-runs in the weakly increasing prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 3, 16, 17, 6, 19, 4, 3, 2, 23, 8, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 12, 37, 2, 3, 8, 41, 2, 43, 4, 9, 2, 47, 16, 49, 10, 3, 4, 53, 18, 5, 8, 3, 2, 59, 4, 61, 2, 9, 64, 5, 2, 67, 4, 3, 2, 71, 24, 73, 2, 15, 4, 7
Offset: 1

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An anti-run is a sequence with no adjacent equal parts. The minima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 540 are (1,1,2,2,2,3), with maximal anti-runs ((1),(1,2),(2),(2,3)), with minima (1,1,2,2), with Heinz number 36, so a(540) = 36.
The prime indices of 990 are (1,2,2,3,5), with maximal anti-runs ((1,2),(2,3,5)), with minima (1,2), with Heinz number 6, so a(990) = 6.
		

Crossrefs

bigomega is A001222(a(n)) = A375136(n).
Least prime factor is A020639(a(n)) = A020639(n).
Least prime index is A055396(a(n)) = A055396(n).
Heinz weights are A056239(a(n)) = A374706(n).
The greatest prime index A061395(a(n)) is the maximum of row n of A375128.
Firsts for omega (except first term) are half A061742.
Prime indices A112798(a(n)) are row n of A375128.
Positions of prime-powers are A375396, counted by A115029.
Positions of squarefree numbers are A375398, counted by A375134.
A000041 counts integer partitions, strict A000009.
A027748 lists distinct prime factors, sum A008472.
A304038 lists distinct prime indices, sum A066328.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Table[Times@@Prime/@If[n==1,{},Min /@ Split[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]],UnsameQ]],{n,100}]

A381541 Numbers appearing more than once in A048767 (Look-and-Say partition of prime indices).

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 96, 125, 128, 144, 160, 192, 216, 224, 243, 256, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The terms together with their prime indices begin:
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
   96: {1,1,1,1,1,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  160: {1,1,1,1,1,3}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  224: {1,1,1,1,1,4}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
For example, the term 96 appears in A048767 at positions 44 and 60, with prime indices:
  44: {1,1,5}
  60: {1,1,2,3}
		

Crossrefs

- fixed points are A048768, A217605
- conjugate is A381431, fixed points A000961, A000005
- all numbers present are A351294, conjugate A381432
- numbers missing are A351295, conjugate A381433
- numbers appearing only once are A381540, conjugate A381434
- numbers appearing more than once are A381541 (this), conjugate A381435
A000040 lists the primes.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381440 lists Look-and-Say partitions of prime indices, conjugate A381436.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}];
    Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]>1&]

A387120 Number of ways to choose a different constant integer partition of each prime index of n.

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 3, 0, 2, 2, 2, 0, 4, 3, 4, 0, 2, 2, 4, 0, 6, 2, 3, 0, 2, 4, 0, 0, 4, 4, 2, 0, 4, 2, 6, 0, 6, 4, 8, 0, 2, 6, 4, 0, 4, 3, 4, 0, 6, 2, 4, 0, 5, 0, 4, 0, 8, 4, 2, 0, 6, 2, 6, 0, 8, 4, 2, 0, 6, 6, 6, 0, 4, 6, 4, 0, 6, 8, 4, 0, 0, 2, 2, 0, 4, 4, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 90 are {1,2,2,3}, with choices:
  ((1),(2),(1,1),(3))
  ((1),(1,1),(2),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(1,1,1))
so a(90) = 4.
		

Crossrefs

For multiset systems see A355529, set systems A367901.
For not necessarily different choices we have A355731, see A355740.
For divisors instead of constant partitions we have A355739 (also the disjoint case).
For prime factors instead of constant partitions we have A387136.
For all instead of just constant partitions we have A387110, disjoint case A383706.
For initial intervals instead of partitions we have A387111.
For strict instead of constant partitions we have A387115.
Twice partitions of this type are counted by A387179, constant-block case of A296122.
Positions of zero are A387180 (non-choosable), complement A387181 (choosable).
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[n]],UnsameQ@@#&]],{n,100}]

A367587 Least element in row n of A367858 (multiset multiplicity cokernel).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 1, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 1, 7, 1, 16, 1, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 2, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2023

Keywords

Comments

We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.

Crossrefs

Indices of first appearances are A008578.
Depends only on rootless base A052410, see A007916.
For kernel instead of cokernel we have A055396.
For maximum instead of minimum element we have A061395.
The opposite version is A367583.
Row-minima of A367858.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367579 lists MMK, rank A367580, sum A367581, max A367583, min A055396.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&],{i,mts}]]];
    Table[If[n==1,0,Min@@mmc[prix[n]]],{n,100}]

Formula

a(n) = A055396(A367859(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A061395(n).

A374250 Greatest sum of run-compression of a permutation of the prime factors of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 7, 13, 9, 8, 2, 17, 8, 19, 9, 10, 13, 23, 7, 5, 15, 3, 11, 29, 10, 31, 2, 14, 19, 12, 10, 37, 21, 16, 9, 41, 12, 43, 15, 11, 25, 47, 7, 7, 12, 20, 17, 53, 8, 16, 11, 22, 31, 59, 12, 61, 33, 13, 2, 18, 16, 67, 21, 26, 14, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The prime factors of 24 are {2,2,2,3}, with permutations such as (2,2,3,2) whose run-compression sums to 7, so a(24) = 7.
The prime factors of 216 are {2,2,2,3,3,3}, with permutations such as (2,3,2,3,2,3) whose run-compression sums to 15, so a(216) = 15.
		

Crossrefs

Positions of 2 are A000079 (powers of two) except 1.
Positions of 3 are A000244 (powers of three) except 1.
For least instead of greatest sum of run-compression we have A008472.
For prime indices instead of factors we have A373956.
For number of runs instead of sum of run-compression we have A373957.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 lists run-compression of prime indices, sum A066328.
A335433 lists numbers whose prime indices are separable, complement A335448.
A373949 counts compositions by sum of run-compression, opposite A373951.
A374251 run-compresses standard compositions, sum A373953, rank A373948.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Max@@(Total[First/@Split[#]]& /@ Permutations[prifacs[n]]),{n,100}]

Formula

a(n) = A001414(n) iff n belongs to A335433 (the separable case, complement A335448), row-sums of A027746.
Previous Showing 41-50 of 105 results. Next