A277649 Where records occur in A066400.
1, 2, 8, 14, 52, 99, 589, 594, 595, 1566, 1961, 3465, 5301
Offset: 1
Extensions
Suggested by Peter Kagey in a comment of A066400, Oct 24 2016.
Name corrected by Omar E. Pol, Nov 06 2016
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(2) = 6 because the best such sequence is 2,3,6. For n = 3 through 6 the {smallest m then smallest t then smallest product} solutions are 3,6,8; 4; 5,8,10; 6,8,12.
Table[k = 0; Which[IntegerQ@ Sqrt@ n, k, And[PrimeQ@ n, n > 3], k = n, True, While[Length@ Select[n Map[Times @@ # &, n + Rest@ Subsets@ Range@ k], IntegerQ@ Sqrt@ # &] == 0, k++]]; k + n, {n, 40}] (* Michael De Vlieger, Oct 26 2016 *)
. n | Row(n) | A066400(n) | A245530(n) | A066401(n) . -----+------------------------+------------+------------+----------- . 1 | [1] | 1 | 1 | 1 . 2 | [2, 3, 6] | 3 | 36 | 6 . 3 | [3, 6, 8] | 3 | 144 | 12 . 4 | [4] | 1 | 4 | 2 . 5 | [5, 8, 10] | 3 | 400 | 20 . 6 | [6, 8, 12] | 3 | 576 | 24 . 7 | [7, 8, 14] | 3 | 784 | 28 . 8 | [8, 10, 12, 15] | 4 | 14400 | 120 . 9 | [9] | 1 | 9 | 3 . 10 | [10, 12, 15, 18] | 4 | 32400 | 180 . 11 | [11, 18, 22] | 3 | 4356 | 66 . 12 | [12, 15, 20] | 3 | 3600 | 60 . 13 | [13, 18, 26] | 3 | 6084 | 78 . 14 | [14, 15, 18, 20, 21] | 5 | 1587600 | 1260 . 15 | [15, 18, 20, 24] | 4 | 129600 | 360 . 16 | [16] | 1 | 16 | 4 . 17 | [17, 18, 34] | 3 | 10404 | 102 . 18 | [18, 24, 27] | 3 | 11664 | 108 . 19 | [19, 32, 38] | 3 | 23104 | 152 . 20 | [20, 24, 30] | 3 | 14400 | 120 . 21 | [21, 27, 28] | 3 | 15876 | 126 . 22 | [22, 24, 33] | 3 | 17424 | 132 . 23 | [23, 32, 46] | 3 | 33856 | 184 . 24 | [24, 27, 32] | 3 | 20736 | 144 . 25 | [25] | 1 | 25 | 5 .
Table[k = 0; While[Length@ # == 0 &@ Set[f, Select[Rest@ Subsets@ Range@ k, IntegerQ@ Sqrt[n (Times @@ # &[n + #])] &]], k++]; If[IntegerQ@ Sqrt@ n, k = {n}, k = n + Prepend[First@ f, 0]]; k, {n, 22}] (* Michael De Vlieger, Oct 26 2016 *)
a(2) = 6 because the best such sequence is 2,3,6 for which the product is 36 = 6^2.
a066401 = a000196 . a245530 -- Reinhard Zumkeller, Jul 25 2014
Table[k = 0; While[Length@ # == 0 &@ Set[f, Select[Rest@ Subsets@ Range@ k, IntegerQ@ Sqrt[n (Times @@ # &[n + #])] &]], k++]; If[IntegerQ@ Sqrt@ n, k = {n}, k = n + Prepend[First@ f, 0]]; Sqrt[Times @@ k], {n, 22}] (* Michael De Vlieger, Oct 26 2016 *)
a245530 = product . a245499_row
Table[k = 0; While[Length@ # == 0 &@ Set[f, Select[Rest@ Subsets@ Range@ k, IntegerQ@ Sqrt[n (Times @@ # &[n + #])] &]], k++]; If[IntegerQ@ Sqrt@ n, k = {n}, k = n + Prepend[First@ f, 0]]; Times @@ k, {n, 22}] (* Michael De Vlieger, Oct 26 2016 *)
For n = 3, the a(3) = 8 subsets of {4, 5, ..., 11} with a product with squarefree part of 3 are {4, 5, 6, 9, 10}, {4, 5, 6, 10}, {4, 6, 8}, {4, 6, 8, 9}, {5, 6, 9, 10}, {5, 6, 10}, {6, 8}, and {6, 8, 9}.
For n=12 the a(12)=3 solutions are 3, 6, and 37: (1) (a) 2 * 12^2 < 3 * 10^2 < 2 * 13^2 (b) 2 * 12^2 < 2 * 3 * 7^2 < 2 * 13^2 (2) (a) 2 * 12^2 < 6 * 7^2 < 2 * 13^2 (b) 2 * 12^2 < 2 * 6 * 5^2 < 2 * 13^2 (3) (a) 2 * 12^2 < 37 * 3^2 < 2 * 13^2 (b) 2 * 12^2 < 2 * 37 * 2^2 < 2 * 13^2
a(0) = 1 via 0 = 0^2 a(1) = 1 via 1 = 1^2 a(2) = 3 via 2 + 3 + 4 = 3^2 a(3) = 2 via 3 + 6 = 3^2 a(4) = 1 via 4 = 2^2 a(5) = 5 via 5 + 6 + 7 + 8 + 10 = 6^2 a(6) = 2 via 6 + 10 = 4^2
For n = 3 the sequence is 3, 6, 8; so a(3) = 8; for n = 4 the sequence is 4, 9, 16; so a(4) = 16; for n = 5 the sequence is 5, 8, 10; so a(5) = 10.
Comments