cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A303643 Numbers k such that k and phi(k) are in A292544.

Original entry on oeis.org

1, 1664, 6815744, 10092544, 27917287424, 4707284156416, 5506148073472, 7060926234624, 8259222110208, 114349209288704, 108649341010313216, 468374361246531584, 1918461383665793368064, 7858017827495089635590144, 11635911013790805806546944, 183907840308875463202177024
Offset: 1

Views

Author

Max Alekseyev and Altug Alkan, Apr 27 2018

Keywords

Examples

			1 is in A292544, and eulerphi(1)=1, so 1 is a term.
1664 and 768=eulerphi(1668) are both in A292544, so 1664 is a term.
		

Crossrefs

Programs

  • PARI
    isA292544(n) = Mod(2, n)^eulerphi(n)==eulerphi(n);
    isok(n) = isA292544(n) && isA292544(eulerphi(n));
    
  • PARI
    { ZK(m) = my(z,k); z=znorder(Mod(2,m)); k=znlog(eulerphi(m),Mod(2,m)); if(type(k)!="t_INT",return()); [z,k]; }
    { getpowerof2(m) = my(m2,t,zk,zk2,r);
        m2 = eulerphi(m);
        t = valuation(m2,2);
        m2 \= 2^t;
        if( m2==1, return(0));
        zk=ZK(m);
        zk2=ZK(m2);
        if(!zk || !zk2, return());
        r = [zk[1],zk2[1],zk[2]-t-zk2[2]+1];  \\ solving r[1] * i = r[2] * j + r[3]
        r /= content(r);
        if( gcd(r[1],r[2])>1, return());
        ((r[2]*lift(Mod(-r[3]/r[2],r[1])) + r[3])/r[1] + r[2]*x)*zk[1] - zk[2] + 1;} \\ getpowerof2(m) returns z*i - k + 1 with x parameter (see formula section), i.e., getpowerof2(13) returns 12*x+7, that is, 13*2^(12*x+7) is a term for all x >= 0.

Formula

Following steps can be used in order to produce terms of this sequence.
(1) Take odd m, find z and k (see formula section of A292544).
(2) Represent phi(m) = 2^t*m', where m' is odd (i.e., m' = A053575(m)).
(3) For this m', find z' and k'.
(4) Solve z*i - k + t = z'*j - k' + 1 for positive i, j.
(5) Each such solution gives a term m*2^(z*i - k + 1) of this sequence.
For all x >= 0, 13*2^(12*x+7), 77*2^(60*x+17), 137*2^(136*x+35), 173*2^(1204*x+259), 193*2^(96*x+49), 269*2^(8844*x+6567), 411*2^(136*x+34), 519*2^(1204*x+258), 557*2^(38364*x+28635), 563*2^(19670*x+9836), 581*2^(2460*x+789), 641*2^(64*x+33), 653*2^(52812*x+39447), 667*2^(4620*x+3405), 769*2^(384*x+193), 807*2^(8844*x+6566) are terms of this sequence (m < 10^3 where m*2^(z*i - k + 1) is the corresponding form).

A385147 a(n) = Sum_{i=1..n} 2^phi(i), where phi=A000010.

Original entry on oeis.org

2, 4, 8, 12, 28, 32, 96, 112, 176, 192, 1216, 1232, 5328, 5392, 5648, 5904, 71440, 71504, 333648, 333904, 338000, 339024, 4533328, 4533584, 5582160, 5586256, 5848400, 5852496, 274287952, 274288208, 1348030032, 1348095568, 1349144144, 1349209680, 1365986896, 1365990992
Offset: 1

Views

Author

Hunter Yeoman, Jun 19 2025

Keywords

Crossrefs

Cf. A000010.
Partial sums of A066781.

Programs

  • Mathematica
    Accumulate[Table[2^EulerPhi[n], {n, 1, 36}]] (* Amiram Eldar, Jun 28 2025 *)
  • PARI
    a(n) = sum(i=1, n, 2^eulerphi(i)); \\ Michel Marcus, Jun 27 2025
  • Python
    from sympy import totient
    a = 0
    terms = []
    for i in range(1, 36):
        a += 2 ** totient(i)
        terms.append(str(a))
    print(", ".join(terms))
    
Previous Showing 11-12 of 12 results.