cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A331284 Number of values of k, 1 <= k <= n, with A329605(k) = A329605(n), where A329605 is the number of divisors of primorial inflation of n (A108951).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2020

Keywords

Comments

Ordinal transform of A329605, or equally, of A329606.

Crossrefs

Cf. A000005, A108951, A329605, A329606, A331285 (positions of the first occurrences of each n, also positions of records).
Cf. also A067004.

Programs

  • Mathematica
    c[n_] := c[n] = If[n == 1, 1, Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ c /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]];
    A329605[n_] := DivisorSigma[0, c[n]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A329605[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A329605(n) = if(1==n,1,my(f=factor(n),e=1,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m));
    v331284 = ordinal_transform(vector(up_to, n, A329605(n)));
    A331284(n) = v331284[n];

Formula

a(A331285(n)) = n for all n.

A069823 Nonprime numbers k for which there is no x < k such that phi(x) = phi(k).

Original entry on oeis.org

1, 15, 25, 35, 51, 65, 69, 81, 85, 87, 121, 123, 129, 141, 143, 159, 161, 177, 185, 187, 203, 213, 235, 247, 249, 253, 255, 265, 267, 275, 289, 299, 301, 309, 321, 323, 339, 341, 343, 361, 393, 403, 415, 425, 447, 485, 489, 501, 519, 527, 529, 535, 537, 551
Offset: 1

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If p is prime there is no x < p such that phi(x) = phi(p) = p-1 since phi(x) < p-1.
Nonprime numbers k such that A081373(k)=1; i.e., the number of numbers not exceeding k, and with identical phi value to that of k, equals one. - Labos Elemer, Mar 24 2003
For 1 < n, if a(n) is squarefree, then phi(a(n)) is nonsquarefree. The converse is also true: for 1 < n, if phi(a(n)) is squarefree then a(n) is nonsquarefree. - Torlach Rush, Dec 26 2017

Examples

			k=25, a nonprime; phi values for k <= 25 are {1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20}; no phi(k) except phi(25) equals 20, A081373(25)=1, so 25 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x] fc[x_] := Count[Table[f[j]-f[x], {j, 1, x}], 0] t1=Flatten[Position[Table[fc[w], {w, 1, 1000}], 1]] t2=Flatten[Position[PrimeQ[t1], False]] Part[t1, t2]
    (* Second program: *)
    Union@ Select[Values[PositionIndex@ Array[EulerPhi, 600]][[All, 1]], ! PrimeQ@ # &] (* Michael De Vlieger, Dec 31 2017 *)
  • PARI
    for(s=1,600,if((1-isprime(s))*abs(prod(i=1,s-1,eulerphi(i)-eulerphi(s)))>0, print1(s,",")))

A079788 a(n) = count of numbers <= n for which the number of divisors is also <= tau(n).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 5, 8, 7, 10, 6, 12, 7, 13, 14, 15, 8, 18, 9, 20, 17, 18, 10, 24, 13, 21, 22, 27, 11, 30, 12, 30, 25, 26, 27, 36, 13, 29, 30, 39, 14, 41, 15, 39, 40, 33, 16, 48, 20, 44, 36, 46, 17, 52, 38, 54, 39, 40, 18, 60, 19, 43, 54, 55, 44, 63, 20, 57, 46, 67, 21, 72, 22, 49
Offset: 1

Views

Author

Amarnath Murthy, Feb 03 2003

Keywords

Examples

			a(7) = 5 as 1, 2, 3, 5 and 7 qualify for the count.
		

Crossrefs

Programs

  • Mathematica
    Do[s = 0; For[i = 1, i <= n, i++, If[DivisorSigma[0, i] <= DivisorSigma[0, n], s++ ]]; Print[s], {n, 1, 50}] (* Ryan Propper, Mar 30 2006 *)
  • PARI
    for(n=1,200,m=0;sn=sigma(n,0);for(i = 1,n,if(sigma(i,0)<=sn,m++));print1(m",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007

Extensions

More terms from Ryan Propper, Mar 30 2006
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007
Previous Showing 11-13 of 13 results.