cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A068012 Number of subsets of {1,2,3,...,n} that sum to 0 mod 6.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 22, 44, 88, 172, 344, 688, 1368, 2736, 5472, 10928, 21856, 43712, 87392, 174784, 349568, 699072, 1398144, 2796288, 5592448, 11184896, 22369792, 44739328, 89478656, 178957312, 357914112, 715828224, 1431656448, 2863311872, 5726623744
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

6th row of A068009.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, `if`(s=0, 1, 0),
          b(n-1, s)+b(n-1, irem(s+n, 6)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 02 2025
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, If[s == 0, 1, 0], b[n-1, s] + b[n-1, Mod[s+n, 6]]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Sep 04 2025, after Alois P. Heinz *)

Formula

Empirical g.f.: (x-1)*(2*x^4+3*x^3+x^2-1) / ((2*x-1)*(2*x^3-1)). - Colin Barker, Dec 22 2012

A068013 Number of subsets of {1,2,3,...,n} that sum to 0 mod 7.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 10, 20, 38, 74, 146, 294, 586, 1172, 2344, 4684, 9364, 18724, 37452, 74900, 149800, 299600, 599192, 1198376, 2396744, 4793496, 9586984, 19173968, 38347936, 76695856, 153391696, 306783376, 613566768, 1227133520, 2454267040
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

7th row of A068009.

Formula

Empirical G.f.: -(2*x^7+x^5-x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^7-1)). [Colin Barker, Dec 22 2012]

A068032 Number of subsets of {1,2,3,...,n} that sum to 0 mod 11.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 6, 12, 24, 47, 94, 188, 374, 746, 1490, 2978, 5958, 11916, 23832, 47664, 95326, 190652, 381304, 762604, 1525204, 3050404, 6100804, 12201612, 24403224, 48806448, 97612896, 195225788, 390451576, 780903152, 1561806296
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

11th row of A068009.

Formula

Empirical G.f.: -(2*x^11+x^9-x^5+x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^11-1)). [Colin Barker, Dec 22 2012]

A068033 Number of subsets of {1,2,3,...,n} that sum to 0 mod 12.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 6, 11, 22, 44, 86, 172, 344, 684, 1368, 2736, 5464, 10928, 21856, 43696, 87392, 174784, 349536, 699072, 1398144, 2796224, 5592448, 11184896, 22369664, 44739328, 89478656, 178957056, 357914112, 715828224, 1431655936
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

12th row of A068009.

Formula

Empirical G.f.: -(2*x^8-x^7-2*x^6-3*x^5-x^4+3*x^3+x^2+x-1) / ((2*x-1)*(2*x^3-1)). [Colin Barker, Dec 22 2012]

A068034 Number of subsets of {1,2,3,...,n} that sum to 0 mod 13.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 10, 20, 39, 79, 158, 316, 632, 1262, 2522, 5042, 10082, 20164, 40330, 80660, 161320, 322638, 645278, 1290556, 2581112, 5162224, 10324444, 20648884, 41297764, 82595524, 165191048, 330382100, 660764200, 1321528400
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

13th row of A068009.

Programs

Formula

Empirical G.f.: -(2*x^13-x^10+x^9-x^6+x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^13-1)). [Colin Barker, Dec 22 2012]

A068035 Number of subsets of {1,2,3,...,n} that sum to 0 mod 14.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 10, 19, 37, 73, 147, 293, 586, 1172, 2342, 4682, 9362, 18726, 37450, 74900, 149800, 299596, 599188, 1198372, 2396748, 4793492, 9586984, 19173968, 38347928, 76695848, 153391688, 306783384, 613566760, 1227133520, 2454267040
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

14th row of A068009.

Formula

Empirical G.f.: -(2*x^13+x^12-3*x^11-x^10-x^9-x^8+2*x^7-x^6+x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^7-1)). [Colin Barker, Dec 22 2012]

A068036 Number of subsets of {1,2,3,...,n} that sum to 0 mod 15.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 9, 18, 36, 70, 138, 276, 548, 1096, 2192, 4374, 8744, 17486, 34958, 69916, 139830, 279630, 559260, 1118520, 2236988, 4473964, 8947920, 17895736, 35791472, 71582944, 143165660, 286331296, 572662588, 1145324764, 2290649528
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

15th row of A068009.

Formula

Empirical G.f.: -(8*x^23 +4*x^21 -8*x^20 +4*x^19 -4*x^18 +2*x^17 -4*x^16 +2*x^15 -8*x^14 +2*x^12 +8*x^11 +4*x^10 +4*x^9 -6*x^8 -3*x^7 -5*x^6 -x^4 +3*x^3 +x^2 +x -1) / ((2*x-1) * (2*x^3-1) * (2*x^5-1) * (2*x^15-1)). - Colin Barker, Dec 22 2012

A068037 Number of subsets of {1,2,3,...,n} that sum to 0 mod 16.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 9, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

16th row of A068009.

Formula

a(n) = 2^(-4+n) for n>7. G.f.: (2*x^8 -x^7 -2*x^6 +x^5 +x^4 +x^3 +x^2 +x -1) / (2*x -1). - Colin Barker, Dec 22 2012

A068039 Number of subsets of {1,2,3,...,n} that sum to 0 mod 18.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 8, 16, 30, 58, 115, 229, 456, 912, 1824, 3643, 7286, 14572, 29132, 58262, 116522, 233024, 466048, 932096, 1864150, 3728300, 7456600, 14913112, 29826220, 59652436, 119304704, 238609408, 477218816, 954437292, 1908874584
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

18th row of A068009.

Formula

Empirical G.f.: -(12*x^35 +2*x^34 -16*x^33 +8*x^32 +16*x^31 -6*x^30 +2*x^29 +12*x^28 +16*x^27 -8*x^26 -32*x^25 -18*x^24 +6*x^23 +16*x^22 +6*x^21 +2*x^20 +12*x^19 -12*x^18 -6*x^17 -x^16 +8*x^15 -4*x^14 -8*x^13 +3*x^12 -x^11 -6*x^10 +4*x^8 +6*x^7 +x^6 +x^5 +x^4 -3*x^3 -x^2 -x +1) / ((2*x -1)*(2*x^3 -1)*(2*x^6 -1)*(2*x^9 -1)*(2*x^18 -1)). [Colin Barker, Dec 23 2012]

A068040 Number of subsets of {1,2,3,...,n} that sum to 0 mod 19.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 7, 14, 27, 54, 108, 216, 431, 862, 1724, 3450, 6899, 13798, 27596, 55190, 110378, 220754, 441506, 883010, 1766020, 3532046, 7064092, 14128182, 28256364, 56512728, 113025456, 226050910, 452101820, 904203640, 1808407284
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

19th row of A068009.

Formula

Empirical G.f.: -(2*x^19+x^17-2*x^16+x^13+x^9-3*x^7+x^5+x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^19-1)). - Colin Barker, Dec 22 2012
Previous Showing 11-20 of 24 results. Next