A164865 Sum of the distinct semiprime divisors of the n-th number with two or more distinct semiprime divisors.
10, 15, 14, 10, 18, 31, 19, 14, 41, 26, 24, 10, 35, 30, 15, 18, 35, 30, 61, 38, 59, 19, 40, 42, 71, 14, 45, 26, 40, 50, 10, 63, 42, 39, 91, 30, 71, 19, 87, 18, 101, 62, 48, 35, 66, 50, 101, 65, 24, 38, 121, 63, 19, 70, 78, 56, 42, 60, 113, 75, 14, 15, 86, 103, 45, 129, 66, 90
Offset: 1
Examples
a(1) = 10 because the 1st number with 2 or more distinct semiprime divisors is k=12=A102467(2), as A001358(1) = 4, 4|12, A001358(2) = 6, 6|12, and 4+6 = 10. a(6) = 31 because the 6th number with multiple distinct semiprime factors is k=30=A102467(7), the semiprimes 6, 10, and 15 divide 30, and 6 + 10 + 15 = 31.
Programs
-
Maple
isA001358 := proc(n) RETURN( numtheory[bigomega](n) =2 ) ; end: A086971 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if isA001358(d) then a := a+1; fi; od; a ; end: A102467 := proc(n) local a; if n = 1 then 1; else for a from procname(n-1)+1 do if A086971(a) >= 2 then RETURN(a) ; fi; od: fi; end: A076290 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if isA001358(d) then a := a+d; fi; od; a ; end: A164865 := proc(n) A076290( A102467(n+1)) ; end: seq(A164865(n),n=1..120) ; # R. J. Mathar, Aug 31 2009
-
Mathematica
sdsd[n_]:=Module[{spd=Select[Divisors[n],PrimeOmega[#]==2&]}, If[ Length[ spd]> 1,Total[spd],0]]; DeleteCases[Array[sdsd,200],0] (* Harvey P. Dale, Oct 29 2015 *)
Formula
Extensions
Corrected and extended by R. J. Mathar, Aug 31 2009
Comments