cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A226659 Sum_{k=0..n} A000041( binomial(n,k) ), where A000041(n) is the number of partitions of n.

Original entry on oeis.org

1, 2, 4, 8, 23, 100, 1003, 31382, 5149096, 7091568720, 287786595280763, 539018517346414192796, 1130813038175196801809538188145, 2336855300714703790840987155549462486654700, 7636154577344556445476348286247799105605643795614728449082014
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2013

Keywords

Comments

Compare to the number of partitions of 2^n (A068413).

Examples

			Equals the row sums of triangle A090011, which begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 5, 11, 5, 1;
1, 7, 42, 42, 7, 1;
1, 11, 176, 627, 176, 11, 1;
1, 15, 792, 14883, 14883, 792, 15, 1;
1, 22, 3718, 526823, 4087968, 526823, 3718, 22, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[Binomial[n,k]],{k,0,n}],{n,0,20}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    {a(n)=sum(k=0,n,numbpart(binomial(n,k)))}
    for(n=0,15,print1(a(n),", "))

Formula

Row sums of triangle A090011.

A129491 Digital sum of the 2^n-th partition number.

Original entry on oeis.org

1, 2, 5, 4, 6, 24, 22, 34, 83, 120, 152, 145, 286, 477, 561, 796, 1271, 1639, 2471, 3598, 5114, 7221, 10283, 14315, 20585, 29110, 40890, 58834, 82319, 115690, 164128, 232044, 328463, 462853, 657811, 927235, 1311605, 1855787, 2629927, 3708205
Offset: 0

Views

Author

Robert G. Wilson v, Apr 12 2007

Keywords

Comments

For the same sequence but for base 10 (A070177): 1,6,43,143,471,1511,4959,15914,49580,158148,501883,1582908,5014367,....

Examples

			a(9) = 120 since P(2^9) = 4453575699570940947378 and 4+4+5+3+5+7+5+6+9+9+5+7+0+9+4+0+9+4+7+3+7+8 = 120.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ IntegerDigits @PartitionsP[2^n]; Table[ f@n, {n, 0, 42}]

Formula

a(n) =~ 9*A129490(n)/2.

Extensions

Offset corrected by Alois P. Heinz, Sep 20 2024

A079281 Number of compositions of 2^n into distinct parts.

Original entry on oeis.org

1, 1, 3, 19, 435, 74875, 348317763, 294729601581739, 682404222981720262704195, 298417646219775679438413815505895285915, 13661663328896434876017827688479176004409461863714010289523203
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2003

Keywords

Examples

			a(2) = 3 since the compositions of 2^2=4 into distinct parts are 4, 3+1 and 1+3.
		

Crossrefs

Cf. A058891 (offset for compositions of 2^n), A067735, A068413.

Programs

  • Maple
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n=m, x^i, `if`(n>m, 0,
           expand(b(n, i-1)+`if`(i>n, 0, x*b(n-i, i-1)))))
        end:
    a:= n->(p->add(coeff(p, x, i)*i!, i=0..degree(p)))(b(2^n$2)):
    seq(a(n), n=0..9); # Alois P. Heinz, Apr 27 2014
  • Mathematica
    b[n_, i_] := b[n, i] = With[{ m = i*(i+1)/2}, If[n==m, x^i, If[n>m, 0, Expand[b[n, i-1] + If[i>n, 0, x*b[n-i, i-1]]]]]]; a[n_] := Function[{p}, Sum[Coefficient[p, x, i]*i!, {i, 0, Exponent[p, x]}]][b[2^n, 2^n]]; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Oct 05 2015, after Alois P. Heinz *)

Formula

a(n) = A032020(A000079(n)).
Previous Showing 11-13 of 13 results.