cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A070147 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an obtuse integer triangle with integer area.

Original entry on oeis.org

52, 252, 368, 372, 561, 659, 839, 957, 1156, 1186, 1204, 1582, 1912, 1920, 1971, 2115, 2713, 2774, 2790, 3251, 3473, 3728, 3746, 4286, 4307, 4313, 4330, 5008, 5272, 5374, 6369, 6389, 6432, 6776, 6881, 7223, 7310, 7341
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=52: [A070080(52), A070081(52), A070082(52)] = [5,5,8]: A070085(52)=5^2+5^2-8^2=-14<0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(52)/2=(5+5+8)/2=9, area^2=9*4*4*1=16*9 is an integer square, therefore A070086(52)=area=4*3=12.
		

Crossrefs

A070148 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer Heronian triangle having triangular area.

Original entry on oeis.org

17, 368, 659, 972, 1156, 1599, 1971, 2555, 2574, 3746, 3818, 4298, 4330, 5374, 14325, 14414, 15004, 15943, 16451, 19475, 19615, 24013, 24051, 33950, 63593, 71630, 75052, 79286, 79670, 79921, 84183, 90187, 93290
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			17 is a term: [A070080(17), A070081(17), A070082(17)] = [3,4,5]: A070086(52)=6.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    area[{a_, b_, c_}] := With[{p = (a + b + c)/2}, Sqrt[p(p-a)(p-b)(p-c)]];
    Position[triangles, {a_, b_, c_} /; IntegerQ[area[{a, b, c}]] && IntegerQ[Sqrt[1 + 8 area[{a, b, c}]]]] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070150 Triangular areas of integer Heronian triangles.

Original entry on oeis.org

6, 36, 66, 120, 36, 120, 120, 210, 210, 120, 300, 210, 210, 300, 378, 630, 528, 780, 528, 210, 630, 630, 300, 1176, 780, 2016, 990, 1176, 2016, 2016, 1596, 780, 1770, 528, 300, 2850, 630, 2016, 780, 990, 3240, 2016, 630
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070086(A070148(n)).

Examples

			A070148(2)=368: [A070080(368), A070081(368), A070082(368)] = [9,10,17], area^2 = s*(s-9)*(s-10)*(s-17) with s=A070083(368)/2=(9+10+17)/2=18, area^2=18*9*8*1=16*81 is an integer square, therefore area=4*9=36=A000217(8).
		

Programs

  • Mathematica
    maxPerim = 300; maxSide = Floor[(maxPerim - 1)/2]; order[{a_, b_, c_}] := (a + b + c)*maxPerim^3 + a*maxPerim^2 + b*maxPerim + c; triangles = Reap[ Do[ If[ a + b + c <= maxPerim && c - b < a < c + b && b - a < c < b + a && c - a < b < c + a, Sow[{a, b, c}]], {a, 1, maxSide}, {b, a, maxSide}, {c, b, maxSide}]][[2, 1]]; stri = Sort[ triangles, order[#1] < order[#2] &]; area[{a_, b_, c_}] := With[{p = (a + b + c)/2}, Sqrt[p*(p - a)*(p - b)*(p - c)]]; triangularQ[n_] := IntegerQ[Sqrt[8*n + 1]]; area /@ Select[stri, IntegerQ[area[#]] && triangularQ[area[#]] &] (* Jean-François Alcover, Feb 22 2013 *)
Previous Showing 11-13 of 13 results.