cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A070792 Integers n such that the 'Reverse and Add!' trajectory of n joins the trajectory of 7.

Original entry on oeis.org

7, 14, 19, 23, 28, 29, 32, 37, 38, 41, 46, 47, 49, 50, 55, 56, 58, 64, 65, 67, 73, 74, 76, 82, 83, 85, 89, 91, 92, 94, 98, 110, 121, 136, 143, 187, 220, 235, 242, 286, 334, 341, 385, 433, 440, 484, 532, 569, 583, 631, 668, 682, 719, 730, 767, 781, 818, 866, 869
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2002

Keywords

Examples

			The trajectory of 14 is part of the trajectory of 7; the trajectory of 235 joins the trajectory of 7 at 8872688 after 13 steps.
		

Crossrefs

Programs

  • Mathematica
    limit = 10^3; x = NestList[ # + IntegerReverse[#] &, 7, limit];
    Select[Range[869],
     Intersection[NestList[ # + IntegerReverse[#] &, #, limit],
    x] != {} &] (* Robert Price, Oct 20 2019 *)

A070793 Integers n such that the 'Reverse and Add!' trajectory of n joins the trajectory of 9.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 198, 297, 396, 495, 594, 693, 792, 891, 990, 1017, 1035, 1044, 1089, 1107, 1125, 1134, 1179, 1215, 1224, 1269, 1305, 1314, 1359, 1404, 1449, 1539, 1629, 1719, 1809, 1899, 1989, 2016, 2034, 2043, 2088, 2106, 2124
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2002

Keywords

Examples

			The trajectory of 18 is part of the trajectory of 9; the trajectory of 1215 joins the trajectory of 9 at 40293 after 3 steps.
		

Crossrefs

Programs

  • Mathematica
    limit = 10^3; x = NestList[ # + IntegerReverse[#] &, 9, limit];
    Select[Range[2124],
     Intersection[NestList[ # + IntegerReverse[#] &, #, limit],
    x] != {} &] (* Robert Price, Oct 20 2019 *)

A070794 Integers n such that the 'Reverse and Add!' trajectory of n joins the trajectory of 100.

Original entry on oeis.org

100, 101, 103, 107, 188, 193, 200, 202, 206, 287, 292, 299, 301, 305, 386, 391, 398, 400, 404, 485, 490, 497, 503, 584, 596, 602, 683, 695, 701, 709, 782, 794, 800, 808, 881, 893, 907, 980, 992, 1034, 1069, 1076, 1124, 1159, 1166, 1214, 1249, 1256, 1291
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2002

Keywords

Examples

			The trajectory of 101 is part of the trajectory of 100; the trajectory of 485 joins the trajectory of 100 at 61105 after 5 steps.
		

Crossrefs

Programs

  • Mathematica
    limit = 10^3; x = NestList[ # + IntegerReverse[#] &, 100, limit];
    Select[Range[1291],
     Intersection[NestList[ # + IntegerReverse[#] &, #, limit],
    x] != {} &] (* Robert Price, Oct 20 2019 *)

A070795 Integers n such that the 'Reverse and Add!' trajectory of n joins the trajectory of 102.

Original entry on oeis.org

102, 105, 150, 156, 201, 204, 255, 300, 303, 309, 354, 402, 408, 453, 501, 507, 552, 600, 606, 609, 651, 705, 708, 750, 804, 807, 903, 906, 1032, 1065, 1122, 1155, 1212, 1245, 1290, 1302, 1335, 1380, 1425, 1470, 1515, 1560, 1605, 1650, 1740, 1830, 1896
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2002

Keywords

Examples

			The trajectory of 303 is part of the trajectory of 102; the trajectory of 750 joins the trajectory of 102 at 6666 after 3 steps.
		

Crossrefs

Programs

  • Mathematica
    limit = 10^3; x = NestList[ # + IntegerReverse[#] &, 102, limit];
    Select[Range[1896],
     Intersection[NestList[ # + IntegerReverse[#] &, #, limit],
    x] != {} &] (* Robert Price, Oct 20 2019 *)

A070797 Integers n such that the 'Reverse and Add!' trajectory of n joins the trajectory of 108.

Original entry on oeis.org

108, 126, 144, 153, 162, 171, 180, 189, 207, 225, 243, 252, 261, 270, 279, 288, 306, 324, 342, 351, 360, 378, 387, 405, 423, 441, 450, 477, 486, 504, 522, 540, 549, 576, 585, 603, 621, 648, 675, 684, 702, 720, 747, 774, 783, 801, 846, 873, 882, 900, 909
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2002

Keywords

Comments

It appears that the first differences of this sequence are always a multiple of 9. - Robert Price, Oct 20 2019

Examples

			The trajectory of 909 is part of the trajectory of 108; the trajectory of 126 joins the trajectory of 108 at 4069593 after 12 steps.
		

Crossrefs

Programs

  • Mathematica
    limit = 10^3; x = NestList[ # + IntegerReverse[#] &, 108, limit];
    Select[Range[909],
    Intersection[NestList[ # + IntegerReverse[#] &, #, limit],
    x] != {} &] (* Robert Price, Oct 20 2019 *)

A243824 Two-column array A(n,s) of pairs (n,s) read by row where s is the smallest seed number such that the Reverse and Add! trajectory of s contains n (excluding cases where n=s).

Original entry on oeis.org

2, 1, 4, 1, 6, 3, 8, 1, 10, 5, 11, 5, 12, 3, 14, 7, 16, 1, 18, 9, 22, 5
Offset: 2

Views

Author

Felix Fröhlich, Jun 11 2014

Keywords

Examples

			A(10,1)=16 is in the array because 16 is the 9th number appearing in the Reverse and Add! trajectory of a smaller number.
A(10,2)=1 is in the array because 1 + 1 = 2, 2 + 2 = 4, 4 + 4 = 8, 8 + 8 = 16, so 1 is the smallest seed number whose Reverse and Add! trajectory contains 16.
Array begins:
  2 1
  4 1
  6 3
  8 1
  10 5
  11 5
  12 3
  14 7
  16 1
  18 9
  22 5
		

Crossrefs

Previous Showing 11-16 of 16 results.