cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A327771 a(n) = p(49*n + 47)/49, where p(k) denotes the k-th partition number (i.e., A000041).

Original entry on oeis.org

2546, 2410496, 508344041, 48286178405, 2734250190712, 106823899382728, 3143746885297470, 73830872731991927, 1440681502991063990, 24058683492974200054, 351628923073820626951, 4577202012225445531319, 53811955397591074514675, 577896157936323089053580
Offset: 0

Views

Author

Petros Hadjicostas, Sep 24 2019

Keywords

Comments

Watson (1938), p. 120, proved that p(7*n + 5) == 0 (mod 7) and p(49*n + 47) == 0 (mod 49) for n >= 0, where p() = A000041(). For more general congruence results modulo a power of 7 by George Neville Watson regarding the partition function, see A327582 and A327770.

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[49n+47]/49,{n, 0, 13}] (* Metin Sariyar, Sep 25 2019 *)
  • PARI
    a(n) = numbpart(49*n + 47)/49; \\ Michel Marcus, Sep 25 2019

Formula

a(n) = A000041(49*n + 47)/49.
Previous Showing 11-11 of 11 results.