cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A356683 a(n) is the smallest positive k such that the count of squarefree numbers <= k that have n prime factors is equal to the count of squarefree numbers <= k that have n-1 prime factors (and the count is positive).

Original entry on oeis.org

2, 39, 1279786, 8377774397163159586
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 22 2022

Keywords

Examples

			The first two squarefree numbers are 1 and 2; 1 has 0 prime factors and 2 has 1 prime factor, so a(1)=2.
At k=39, in the interval [1..k], there are 12 squarefree numbers with 1 prime factor (i.e., 12 primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37), and 12 squarefree numbers with 2 prime factors (i.e., 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39). k=39 is the smallest such positive number for which these two counts are the same (and are positive), so a(2)=39.
At k=1279786, the interval [1..k] includes 265549 squarefree numbers with 2 prime factors and the same number of squarefree numbers with 3 prime factors, and there is no smaller positive number k that has this property (where the counts are positive), so a(3)=1279786. There are 75 numbers with this property, the last one being 1281378.
At k=8377774397163159586, the interval [1..k] includes 1356557942402075858 squarefree numbers with 3 prime factors and the same number of squarefree numbers with 4 prime factors, and there is no smaller positive number k that has this property (where the counts are positive), so a(4)=8377774397163159586. There are 14 numbers with this property, the last one being 8377774397163162544. - _Henri Lifchitz_, Jan 31 2025
		

Crossrefs

Cf. 1 to 5 distinct primes: A000040, A006881, A007304, A046386, A046387.
Cf. 6 to 10 distinct primes: A067885, A123321, A123322, A115343, A281222.
Cf. A340316.

Programs

  • PARI
    a(n) = my(nbm = 0, nbn = 0); for (k=1, oo, if (issquarefree(k), my(o=omega(k)); if (o==n, nbn++); if (o==n-1, nbm++); if (nbm && (nbn==nbm), return(k)))); \\ Michel Marcus, Nov 25 2022
    
  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A356683(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(k,n): return sum(primepi(k//prod(c[1] for c in a))-a[-1][0] for a in g(k,0,1,1,n)) if n>1 else primepi(k)
        return 2 if n==1 else next(k for k in count(1) if (x:=f(k,n-1))>0 and x==f(k,n)) # Chai Wah Wu, Aug 31 2024

Extensions

a(4) from Henri Lifchitz, Jan 31 2025

A363013 a(n) is the number of prime factors (counted with multiplicity) of the n-th cubefull number (A036966).

Original entry on oeis.org

0, 3, 4, 3, 5, 6, 4, 3, 7, 6, 5, 8, 3, 7, 9, 4, 7, 6, 8, 6, 10, 8, 3, 9, 8, 7, 11, 7, 3, 4, 9, 6, 5, 6, 10, 9, 8, 12, 3, 7, 10, 7, 9, 8, 3, 11, 10, 9, 13, 6, 8, 7, 11, 6, 8, 10, 3, 12, 4, 11, 6, 10, 14, 5, 7, 10, 6, 7, 9, 9, 12, 7, 9, 11, 3, 8, 9, 13, 7, 4, 3
Offset: 1

Views

Author

Amiram Eldar, May 13 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399, A360729.

Programs

  • Mathematica
    PrimeOmega[Select[Range[10000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    iscubefull(n) = n==1 || vecmin(factor(n)[, 2]) > 2;
    apply(bigomega, select(iscubefull, [1..10000]))

Formula

a(n) = A001222(A036966(n)).
a(n) >= 3, for n > 1.
Sum_{A036966(k) < x} a(k) = 3*c*x^(1/3)*log(log(x)) + (3*(B_2 - log(2)) + Sum_{p prime} ((4*p^(1/3)+5)/(p^(5/3)+p^(1/3)+1)))*c*x^(1/3) + O(x^(1/3)/sqrt(log(x))), where B_2 = A083342 and c = A362974 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]

A327521 Number of factorizations of the n-th squarefree number A005117(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 5, 1, 2, 2, 2, 1, 2, 2, 1, 5, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 5, 1, 2, 5, 1, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 5, 1, 5, 2, 1, 1, 5, 2, 1, 5, 2, 2, 2, 2, 2, 1, 2, 5, 1, 2, 2, 1, 5, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    nn=100;
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    y=Select[Range[nn],SquareFreeQ];
    Table[Length[facsusing[Rest[y],n]],{n,y}]

Formula

Previous Showing 21-23 of 23 results.