cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A292859 Numbers k such that 10 applications of 'Reverse and Subtract' lead to k, whereas fewer than 10 applications do not lead to k.

Original entry on oeis.org

101451293600894707746789, 105292253210898548706399, 245973964471725640521348, 274359478651754026035528, 551171141805402848917944, 597151082055448828858194
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 25 2017

Keywords

Comments

There are 10 twenty-four-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			105292253210898548706399 -> 888315592687113803586102 -> 686630284375327508072214 -> 274359478651754026035528 -> 551171141805402848917944 -> 101451293600894707746789 -> 886196413897111684407312 -> 672491927785313369715624 -> 245973964471725640521348 -> 597151082055448828858194 -> 105292253210898548706399
		

Crossrefs

Formula

n = f^10(n), n <> f^k(n) for k < 10, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292634 Numbers n such that 4 iterations of 'Reverse and Subtract' lead to n, whereas fewer than 4 iterations do not lead to n.

Original entry on oeis.org

169140971830859028, 312535222687464777, 464929563535070436, 651817066348182933
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 20 2017

Keywords

Comments

There are 4 eighteen-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			|169140971830859028 - 820958038179041961| = 651817066348182933
|651817066348182933 - 339281843660718156| = 312535222687464777
|312535222687464777 - 777464786222535213| = 464929563535070436
|464929563535070436 - 634070535365929464| = 169140971830859028
		

Crossrefs

Formula

n = f^4(n), n <> f^k(n) for k < 4, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292635 Numbers n such that 5 applications of "Reverse and Subtract" lead to n, whereas fewer than 5 applications do not lead to n.

Original entry on oeis.org

10591266563195008940873343680499, 27547681086656717245231891334328, 54795638726597554520436127340244, 68723845538328853127615446167114, 88817367774609971118263222539002
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 20 2017

Keywords

Comments

There are 5 thirty-two-digit terms in the sequence. Further sequences can be obtained by inserting at the center of these terms any number of 9's and by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			10591266563195008940873343680499 -> 88817367774609971118263222539002 -> 68723845538328853127615446167114 -> 27547681086656717245231891334328 -> 54795638726597554520436127340244 -> 10591266563195008940873343680499
		

Crossrefs

Formula

n = f^5(n), n <> f^k(n) for k < 5, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A073142 List of smallest solutions for some k of x = f^k(x), n <> f^j(n) for j < k, where f: m -> |m - reverse(m)|.

Original entry on oeis.org

0, 2178, 11436678, 108811891188, 118722683079
Offset: 1

Views

Author

Klaus Brockhaus, Jul 17 2002

Keywords

Comments

In the definition, j can be restricted to proper divisors of k. A073143 gives the corresponding values of k. A073144(n) gives the smallest m such that the 'Reverse and Subtract' trajectory of m leads to a(n). Presumably a(6) = 1186781188132188 with k = 17.

Examples

			a(3) = 11436678 is the smallest solution of x = f^14(x) and there is no k such that x = f^k(x) has a smallest solution between a(2) = 2178 and a(3).
		

Crossrefs

Extensions

Offset changed by N. J. A. Sloane, Dec 01 2007

A073143 Numbers k such that A073142(n) = f^k(A073142(n)), where f: m -> |m - reverse(m)|.

Original entry on oeis.org

1, 2, 14, 22, 12
Offset: 1

Views

Author

Klaus Brockhaus, Jul 17 2002

Keywords

Comments

Presumably a(6) = 17. a(n) is the length of the periodic part (cf. A072137) of the trajectory of A073142(n). Question: Does every k > 0 appear in this sequence?

Examples

			a(3) = 14 since A073142(2) = 11436678 is the smallest solution of x = f^14(x).
		

Crossrefs

Extensions

Offset changed by N. J. A. Sloane, Dec 01 2007

A073144 Smallest m such that the 'Reverse and Subtract' trajectory (cf. A072137) of m leads to A073142(n).

Original entry on oeis.org

0, 1012, 10001145, 100000114412, 100010505595
Offset: 1

Views

Author

Klaus Brockhaus, Jul 17 2002

Keywords

Comments

Presumably a(6) = 1000000011011012.

Examples

			1012 -> 1089 -> 8712 -> 6534 -> 2178 = A073142(1) and no m < 1012 leads to 2178.
		

Crossrefs

Extensions

Offset changed by N. J. A. Sloane, Dec 01 2007

A292992 Numbers n such that 13 applications of 'Reverse and Subtract' lead to n, whereas fewer than 13 applications do not lead to n.

Original entry on oeis.org

1195005230033599502088049947699664004979, 1381092199992389193086189078000076108069, 1417996648846699605185820033511533003948, 2845548027720844548271544519722791554517
Offset: 1

Views

Author

Ray Chandler, Sep 28 2017

Keywords

Comments

There are 13 forty-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			1195005230033599502088049947699664004979 -> 8598999439933899906714010005600661000932 -> 6208997779868899802537910022201311001974 -> 1417996648846699605185820033511533003948 -> 7075006702306600680629249932976933993193 -> 3161013305514201251368389866944857987486 -> 3686884278982488587263131157210175114127 -> 3527231431145022726364727685688549772736 -> 2845548027720844548271544519722791554517 -> 4309003944558309903456909960554416900965 -> 1381092199992389193086189078000076108069 -> 8226924500016320623717730754999836793762 -> 5552948110021750246544470518899782497534 ->
  1195005230033599502088049947699664004979.
		

Crossrefs

Formula

n = f^13(n), n <> f^k(n) for k < 13, where f: x -> |x - reverse(x)|.

A292993 Numbers n such that 15 applications of 'Reverse and Subtract' lead to n, whereas fewer than 15 applications do not lead to n.

Original entry on oeis.org

10695314508256806604321090888649339244708568530399, 11787342277647023379656208735392766826312885522179, 14638655404662283607788118901219361883250644206458, 26730889210860738952361172793674105293199801097128
Offset: 1

Views

Author

Ray Chandler, Sep 28 2017

Keywords

Comments

There are 15 fifty-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 10695314508256806604321090888649339244708568530399, 26730889210860738952361172793674105293199801097128, 29899105876561459824028272726867015583422139910097, 49102887245877091252834454555175879833145710289795, 55448121688278511195278554322651878413601497706634, 68315444154984874470735536347381553142144945548514, 88608272072487486790367718123691321620571972829202) or any number of 9's (for the other eight terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - Ray Chandler, Oct 15 2017

Examples

			10695314508256806604321090888649339244708568530399 -> 88608272072487486790367718123691321620571972829202 -> 68315444154984874470735536347381553142144945548514 -> 26730889210860738952361172793674105293199801097128 -> 55448121688278511195278554322651878413601497706634 -> 11787342277647023379656208735392766826312885522179 -> 85335216543715843349697571530304565248364338856532 -> 61769333197331586809394053950610230396629777603174 -> 14638655404662283607788118901219361883250644206458 -> 70821589200576532783422862287551276343389811477183 -> 32644177302242165567844635465112552775889512964376 -> 34702744296615559953311818179764003348330864180247 -> 39505402506768770093485363631571992203338380540496 -> 29899105876561459824028272726867015583422139910097 -> 49102887245877091252834454555175879833145710289795.
		

Crossrefs

Formula

n = f^15(n), n <> f^k(n) for k < 15, where f: x -> |x - reverse(x)|.

A335978 Numbers m of the form abs(k - reverse(k)) for at least one k.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 180, 189, 198, 270, 279, 297, 360, 369, 396, 450, 459, 495, 540, 549, 594, 630, 639, 693, 720, 729, 792, 810, 819, 891, 900, 909, 990, 999, 1089, 1179, 1188, 1269, 1278, 1359, 1368, 1449, 1458, 1539, 1548, 1629, 1638, 1719, 1728, 1800, 1809, 1818, 1890, 1908, 1980, 1989, 1998, 2079
Offset: 1

Views

Author

Michael Greaney, Jul 03 2020

Keywords

Comments

All terms are divisible by 9.
Let f(k) = k - reverse(k). Then f(reverse(k)) = -f(k), since f(reverse(k)) = reverse(k) - reverse(reverse(k)) = reverse(k) - k = - (k - reverse(k)) = -f(k).
Iteration of the function f(k) = k - reverse(k) leads to A072140, A072141, A072142, and A072143.

Crossrefs

Dividing by 9 gives A334145.

A072144 Numbers n such that the period length of the 'Reverse and Subtract' trajectory of n is greater than 2.

Original entry on oeis.org

10001145, 10001827, 10002179, 10002289, 10002894, 10003037, 10003268, 10003378, 10004412, 10004698, 10006304, 10007624, 10007734, 10007965, 10008108, 10008713, 10008823, 10009175, 10009857, 10010022, 10010484
Offset: 1

Views

Author

Klaus Brockhaus, Jun 24 2002

Keywords

Comments

'Reverse and Subtract' (cf. A072137) is defined by x -> |x - reverse(x)|. - Subsequence of A072140.

Examples

			10001145 -> 44108856 -> 21771288 -> 66446424 -> 23981958 and 23981958 as a term of A072142 is the first term of the periodic part of the trajectory of 10001145, period length is 14.
		

Crossrefs

Previous Showing 11-20 of 21 results. Next