cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A075666 Sum of next n 5th powers.

Original entry on oeis.org

1, 275, 11925, 208624, 2078375, 14118201, 72758875, 304553600, 1084203549, 3390961375, 9540835601, 24582546000, 58801331875, 131987718149, 280410672375, 567799960576, 1102105900025, 2060382328875, 3724847929549, 6534040766000, 11154010982751, 18575718271825
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^5 = 1; a(2) = 2^5 + 3^5 = 275; a(3) = 4^5 + 5^5 + 6^5 = 11925; a(4) = 7^5 + 8^5 + 9^5 + 10^5 = 208624.
		

Crossrefs

Cf. A000584 (5th powers).
Cf. A072474 (for squares), A075664 - A075671 (3rd to 10th powers), A069876 (n-th powers).

Programs

  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=5; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
    nn=30;With[{p5=Range[((nn+1)(nn+2))/2]^5},Join[{1},Table[Total[Take[p5,{(n(n+1))/2+1,((n+1)(n+2))/2}]],{n,nn}]]] (* Harvey P. Dale, Mar 09 2014 *)
    Module[{nn=25,p5},p5=Range[(nn(nn+1))/2]^5;Total/@TakeList[p5,Range[nn]]] (* Harvey P. Dale, Oct 13 2023 *)

Formula

a(n) = Sum_{i=n(n-1)/2+1..n(n-1)/2+n} i^5.
a(n) = (3n^11 + 25n^9 + 53n^7 + 23n^5 - 8n^3)/96. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^10 +263*x^9 +8691*x^8 +83454*x^7 +301932*x^6 +458718*x^5 +301932*x^4 +83454*x^3 +8691*x^2 +263*x+1) / (x-1)^12. - Colin Barker, Jul 22 2012

A075667 Sum of next n 6th powers.

Original entry on oeis.org

1, 793, 66377, 1911234, 28504515, 271739011, 1874885963, 10136389172, 45311985069, 173957200405, 589679082421, 1802148522758, 5045944649967, 13108508706879, 31915866810295, 73427944186856, 160710828298553, 336507487921137, 677266380588289, 1315464522556810
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^6 = 1; a(2) = 2^6 + 3^6 = 793; a(3) = 4^6 + 5^6 + 6^6 = 66377; a(4) = 7^6 + 8^6 + 9^6 + 10^6 = 1911234.
		

Crossrefs

Cf. A001014 (6th powers).
Cf. A006003, A072474 (for squares), A075664 - A075671 (3rd to 10th powers), A069876 (n-th powers).

Programs

  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=6; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
    With[{nn=20},Total/@TakeList[Range[(nn(nn+1))/2]^6,Range[nn]]] (* or *) LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,793,66377,1911234,28504515,271739011,1874885963,10136389172,45311985069,173957200405,589679082421,1802148522758,5045944649967,13108508706879},20] (* Harvey P. Dale, Mar 29 2022 *)

Formula

a(n) = Sum_{i=n(n-1)/2+1..n(n-1)/2+n} i^6.
a(n) = (21n^13 + 231n^11 + 693n^9 + 549n^7 - 126n^5 - 56n^3 + 32n)/1344. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^12 +779*x^11 +55366*x^10 +1053755*x^9 +7499895*x^8 +23228658*x^7 +33620292*x^6 +23228658*x^5 +7499895*x^4 +1053755*x^3 +55366*x^2 +779*x +1)/(x-1)^14. - Colin Barker, Jul 22 2012

A075668 Sum of next n 7th powers.

Original entry on oeis.org

1, 2315, 374445, 17703664, 394340375, 5265954441, 48574262275, 338837482880, 1900477947429, 8950536157375, 36536761179281, 132397570996560, 433806511149115, 1303971065324669, 3637715990646375, 9507513902672896, 23461050872397545, 55013865421504275
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^7 = 1; a(2) = 2^7 + 3^7 = 2315; a(3) = 4^7 + 5^7 + 6^7 = 374445; a(4) = 7^7 + 8^7 + 9^7 + 10^7 = 17703664.
		

Crossrefs

Cf. A001015 (7th powers).
Cf. A006003 (for natural numbers), A072474 (for squares), A075664 - A075671 (for 3rd to 10th powers), A069876 (n-th powers).

Programs

  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=7; Table[Sum[i^s, {i, i1, i2}], {n, 20}]

Formula

a(n) = Sum_{i=n*(n-1)/2+1..n*(n-1)/2+n} i^7.
a(n) = (3*n^15 + 42*n^13 + 168*n^11 + 206*n^9 - 11*n^7 - 56*n^5 + 32*n^3)/384. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^14 +2299*x^13 +337525*x^12 +11989784*x^11 +154720571*x^10 +875467853*x^9 +2397170367*x^8 +3336829200*x^7 +2397170367*x^6 +875467853*x^5 +154720571*x^4 +11989784*x^3 +337525*x^2 +2299*x +1)/(x-1)^16. - Colin Barker, Jul 22 2012

A075669 Sum of next n 8th powers.

Original entry on oeis.org

1, 6817, 2135777, 165588738, 5498750979, 102697107715, 1264908663011, 11373936899396, 79985007371877, 461856872635333, 2269365182729029, 9747136491367430, 37362375267437415, 129917413702762791, 415196000174767687, 1232554282743058568, 3428668198703973449
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^8 = 1; a(2) = 2^8 + 3^8 = 6817; a(3) = 4^8 + 5^8 + 6^8 = 2135777; a(4) = 7^8 + 8^8 + 9^8 + 10^8 = 165588738.
		

Crossrefs

Cf. A001016 (8th powers).
Cf. A006003 (for natural numbers), A072474 (for squares), A075664 - A075671 (for 3rd to 10th powers), A069876 (for n-th powers).

Programs

  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=8; Table[Sum[i^s, {i, i1, i2}], {n, 20}]

Formula

a(n) = Sum_{i=n*(n-1)/2+1..n*(n-1)/2+n} i^8.
a(n) = (45*n^17 + 780*n^15 + 3990*n^13 + 6900*n^11 + 1205*n^9 - 3240*n^7 + 1584*n^5 + 640*n^3 - 384*n)/11520. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^16 +6799*x^15 +2013224*x^14 +128186937*x^13 +2839367964*x^12 +27332724427*x^11 +129026301848*x^10 +319786366637*x^9 +431174080326*x^8 +319786366637*x^7 +129026301848*x^6 +27332724427*x^5 +2839367964*x^4 +128186937*x^3 +2013224*x^2 +6799*x +1)/(x -1)^18. - Colin Barker, Sep 06 2012
Previous Showing 11-14 of 14 results.