cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A072628 Number of divisors d of n such that d-1 is not prime.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 3, 4, 2, 2, 3, 4, 3, 4, 2, 5, 2, 3, 3, 4, 4, 4, 2, 3, 3, 5, 2, 4, 2, 4, 5, 4, 2, 3, 3, 6, 3, 5, 2, 4, 4, 5, 3, 4, 2, 5, 2, 3, 5, 4, 4, 6, 2, 4, 3, 7, 2, 4, 2, 3, 5, 4, 4, 6, 2, 6, 4, 4, 2, 5, 4, 4, 3, 5, 2, 7, 4, 5, 3, 4, 4, 4, 2, 4, 5, 7, 2, 5, 2, 5, 7
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Examples

			If n = p is prime then divisors - 1 = {1, p} - 1 = {0, p-1} so a(p) = 2 if p <> 3.
240 has 20 divisors, of them 8 divisors d have nonprime value of d-1, {0, 1, 4, 9, 14, 15, 39, 119}, so a(240) = 8.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Divisors[x]; dp[x_] := Part[di[x], Flatten[Position[PrimeQ[ -1+di[x]], True]]]-1; Table[DivisorSigma[0, w]-Length[dp[w]], {w, 1, 128}]
    a[n_] := DivisorSum[n, 1 &, !PrimeQ[#-1] &]; Array[a, 100] (* Amiram Eldar, Apr 13 2024 *)
  • PARI
    a(n) = sumdiv(n, d, !isprime(d-1)); \\ Amiram Eldar, Apr 13 2024

Formula

a(n) = A000005(n) - A072627(n) < A000005(n).

A322676 Numbers k > 0 such that k has more divisors d, such that d-1 is prime, than any other smaller positive number, with a(1) = 1.

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 72, 120, 168, 240, 360, 720, 1440, 2160, 2520, 4320, 5040, 7560, 10080, 15120, 20160, 27720, 30240, 55440, 75600, 83160, 110880, 151200, 166320, 332640, 665280, 831600, 1330560, 1441440, 1663200, 2162160, 2882880, 3326400, 4324320, 6486480, 8648640
Offset: 1

Views

Author

Daniel Suteu, Dec 23 2018

Keywords

Comments

Position of records in A072627.

Crossrefs

Programs

A341119 a(n) is the least positive number that has exactly n divisors d such that d-1 is prime.

Original entry on oeis.org

1, 3, 6, 18, 12, 36, 24, 48, 72, 120, 168, 336, 240, 540, 360, 960, 840, 1080, 720, 1680, 3024, 1440, 2160, 2880, 2520, 6480, 4320, 14040, 8640, 5040, 9240, 7560, 23520, 12600, 18480, 10080, 33600, 22680, 15120, 20160, 36960, 27720, 47880, 40320, 37800, 47520, 30240, 80640, 85680, 65520, 60480
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Feb 05 2021

Keywords

Comments

a(n) is the least positive solution to A072627(k) = n.
The conjectured terms are exact if for 0 <= n <= 10000 we have a(n) / A046523(A000005(a(n))) <= 9. For the found terms, a(n) / A046523(A000005(a(n))) <= 7.3. - David A. Corneth, Jun 15 2022

Examples

			a(3) = 18 has 3 such divisors: 2+1=3, 5+1=6, 17+1=18, and is the least number with exactly 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(t -> isprime(t-1), numtheory:-divisors(n))) end proc:
    N:= 60: count:= 0:
    V:= Array(0..N):
    for n from 1 while count < N+1 do
      v:= f(n);
      if v <= N and V[v] = 0 then
        count:=count+1;
        V[v]:= n;
      fi;
    od:
    convert(V,list);
  • Mathematica
    With[{s = Array[DivisorSum[#, 1 &, PrimeQ[# - 1] &] &, 10^5]}, Array[FirstPosition[s, #][[1]] &, 51, 0]] (* Michael De Vlieger, Feb 05 2021 *)
  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, isprime(d-1)) != n, k++); k; \\ Michel Marcus, Feb 05 2021
Previous Showing 11-13 of 13 results.