cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A361873 Decimal representation of continued fraction 1, 4, 7, 10, 13, 16, 19, ... (A016777).

Original entry on oeis.org

1, 2, 4, 1, 4, 9, 5, 7, 1, 9, 5, 7, 9, 3, 0, 3, 1, 1, 3, 0, 1, 9, 9, 6, 6, 3, 7, 6, 3, 0, 6, 4, 5, 0, 3, 2, 3, 4, 8, 0, 8, 5, 8, 6, 7, 1, 2, 5, 3, 6, 1, 3, 4, 8, 6, 4, 5, 4, 5, 9, 6, 2, 3, 3, 5, 6, 7, 5, 5, 9, 2, 4, 2, 7, 5, 6, 7, 2, 9, 7, 4, 4, 0, 6, 3, 9, 2, 6, 1, 7, 6, 9, 8, 7, 3, 2, 4, 5, 9, 7, 9, 4, 5, 7, 4, 9, 9, 7, 4, 1, 5, 5, 7, 1, 2, 0, 7, 6, 6, 7
Offset: 1

Views

Author

Kelvin Voskuijl, Mar 27 2023

Keywords

Examples

			1.24149571957930311301996637630645032348085867125361348645459...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + BesselI[4/3, 2/3]/BesselI[1/3, 2/3], 10, 120][[1]]

Formula

Equals 1 + BesselI(4/3, 2/3)/BesselI(1/3, 2/3).

A377635 Decimal expansion of 1/(exp(2) - 1).

Original entry on oeis.org

1, 5, 6, 5, 1, 7, 6, 4, 2, 7, 4, 9, 6, 6, 5, 6, 5, 1, 8, 1, 8, 0, 8, 0, 6, 2, 3, 4, 6, 5, 4, 2, 3, 9, 1, 6, 4, 5, 6, 0, 0, 6, 9, 7, 0, 6, 2, 0, 2, 2, 6, 3, 2, 7, 7, 7, 1, 5, 7, 6, 4, 8, 3, 7, 8, 3, 5, 4, 2, 1, 3, 5, 2, 3, 0, 9, 3, 7, 1, 9, 1, 3, 3, 7, 3, 3, 9, 6, 2, 0
Offset: 0

Views

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			0.1565176427496656518180806234654239164560069706202...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/(Exp[2] - 1), 10, 100]]
  • PARI
    1/(exp(2) - 1) \\ Amiram Eldar, Nov 08 2024

Formula

Equals 1/(A072334 - 1).
Equals Sum_{k >= 1} (-1)^(k+1)*zeta(2*k)/Pi^(2*k).
From Amiram Eldar, Nov 08 2024: (Start)
Formulas from Shamos (2011):
Equals (coth(1) - 1)/2 = (A073747 - 1)/2.
Equals Sum_{k>=1} exp(-2*k).
Equals Sum_{k>=1} 1/(k^2*Pi^2 + 1).
Equals Sum_{k>=0} B(k)*2^(k-1)/k!, where B(k) = A027641(k)/A027642(k) is the k-th Bernoulli number. (End)

A378909 Decimal expansion of 1/sqrt(tanh(1)).

Original entry on oeis.org

1, 1, 4, 5, 8, 7, 7, 5, 1, 7, 6, 6, 9, 0, 2, 7, 0, 0, 8, 3, 1, 5, 3, 0, 6, 7, 5, 2, 4, 0, 3, 7, 6, 4, 2, 4, 2, 1, 4, 5, 7, 9, 5, 2, 3, 6, 5, 9, 8, 8, 6, 3, 3, 8, 1, 8, 3, 8, 1, 6, 7, 1, 1, 6, 3, 4, 1, 7, 6, 1, 9, 6, 5, 2, 6, 1, 1, 7, 2, 9, 8, 6, 4, 7, 2, 5, 3, 8, 1, 8, 4, 1, 4, 9, 9, 3, 3, 4, 2, 9
Offset: 1

Views

Author

Stefano Spezia, Dec 10 2024

Keywords

Examples

			1.145877517669027008315306752403764242145795236598...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.6.5, p. 223.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Sqrt[Tanh[1]],10,100][[1]]

Formula

Equals sqrt(A073747). - Hugo Pfoertner, Dec 10 2024
Previous Showing 21-23 of 23 results.