A240533
a(n) = numerators of n!/10^n.
Original entry on oeis.org
1, 1, 1, 3, 3, 3, 9, 63, 63, 567, 567, 6237, 18711, 243243, 1702701, 5108103, 5108103, 86837751, 781539759, 14849255421, 14849255421, 311834363841, 3430178002251, 78894094051773, 236682282155319, 236682282155319, 3076869668019147, 83075481036516969
Offset: 0
-
[Numerator(Factorial(n)/10^n): n in [0..30]];
-
Table[Numerator[n!/10^n], {n, 0, 30}]
A240534
a(n) = denominators of n!/10^n.
Original entry on oeis.org
1, 10, 50, 500, 1250, 2500, 12500, 125000, 156250, 1562500, 1562500, 15625000, 39062500, 390625000, 1953125000, 3906250000, 2441406250, 24414062500, 122070312500, 1220703125000, 610351562500, 6103515625000, 30517578125000
Offset: 0
-
[Denominator(Factorial(n)/10^n): n in [0..30]];
-
Table[Denominator[n!/10^n], {n, 0, 30}]
A350266
Triangle read by rows. T(n, k) = binomial(n, k) * n! / (n - k + 1)! if k >= 1, if k = 0 then T(n, k) = k^n. T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 9, 6, 0, 4, 24, 48, 24, 0, 5, 50, 200, 300, 120, 0, 6, 90, 600, 1800, 2160, 720, 0, 7, 147, 1470, 7350, 17640, 17640, 5040, 0, 8, 224, 3136, 23520, 94080, 188160, 161280, 40320, 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880
Offset: 0
Table starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 2;
[3] 0, 3, 9, 6;
[4] 0, 4, 24, 48, 24;
[5] 0, 5, 50, 200, 300, 120;
[6] 0, 6, 90, 600, 1800, 2160, 720;
[7] 0, 7, 147, 1470, 7350, 17640, 17640, 5040;
[8] 0, 8, 224, 3136, 23520, 94080, 188160, 161280, 40320;
[9] 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880;
-
T := (n, k) -> ifelse(k = 0, k^n, binomial(n, k)^2 * k! / (n - k + 1)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := Binomial[n, k]^2 * k!/(n - k + 1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jan 09 2022 *)
A082426
a(n) = floor(n*n!/2 + 1).
Original entry on oeis.org
1, 3, 10, 49, 301, 2161, 17641, 161281, 1632961, 18144001, 219542401, 2874009601, 40475635201, 610248038401, 9807557760001, 167382319104001, 3023343138816001, 57621363351552001, 1155628453883904001, 24329020081766400001, 536454892802949120001, 12364008005553684480001
Offset: 1
-
seq(floor(n*n!/2 + 1), n=1..20);
-
a[n_] := Floor[n*n!/2 + 1]; Array[a, 20] (* Amiram Eldar, May 09 2025 *)
-
a(n) = (n*n!)\2 + 1; \\ Amiram Eldar, May 09 2025
Comments