cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A240533 a(n) = numerators of n!/10^n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 63, 63, 567, 567, 6237, 18711, 243243, 1702701, 5108103, 5108103, 86837751, 781539759, 14849255421, 14849255421, 311834363841, 3430178002251, 78894094051773, 236682282155319, 236682282155319, 3076869668019147, 83075481036516969
Offset: 0

Views

Author

Vincenzo Librandi, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [Numerator(Factorial(n)/10^n): n in [0..30]];
  • Mathematica
    Table[Numerator[n!/10^n], {n, 0, 30}]

A240534 a(n) = denominators of n!/10^n.

Original entry on oeis.org

1, 10, 50, 500, 1250, 2500, 12500, 125000, 156250, 1562500, 1562500, 15625000, 39062500, 390625000, 1953125000, 3906250000, 2441406250, 24414062500, 122070312500, 1220703125000, 610351562500, 6103515625000, 30517578125000
Offset: 0

Views

Author

Vincenzo Librandi, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [Denominator(Factorial(n)/10^n): n in [0..30]];
  • Mathematica
    Table[Denominator[n!/10^n], {n, 0, 30}]

A350266 Triangle read by rows. T(n, k) = binomial(n, k) * n! / (n - k + 1)! if k >= 1, if k = 0 then T(n, k) = k^n. T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 9, 6, 0, 4, 24, 48, 24, 0, 5, 50, 200, 300, 120, 0, 6, 90, 600, 1800, 2160, 720, 0, 7, 147, 1470, 7350, 17640, 17640, 5040, 0, 8, 224, 3136, 23520, 94080, 188160, 161280, 40320, 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880
Offset: 0

Views

Author

Peter Luschny, Jan 09 2022

Keywords

Examples

			Table starts:
[0] 1;
[1] 0, 1;
[2] 0, 2,   2;
[3] 0, 3,   9,    6;
[4] 0, 4,  24,   48,    24;
[5] 0, 5,  50,  200,   300,    120;
[6] 0, 6,  90,  600,  1800,   2160,     720;
[7] 0, 7, 147, 1470,  7350,  17640,   17640,    5040;
[8] 0, 8, 224, 3136, 23520,  94080,  188160,  161280,   40320;
[9] 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880;
		

Crossrefs

A350267 (row sums), A000142 (main diagonal), A074143 (subdiagonal), A006002 (column 2), A089835 (central terms).

Programs

  • Maple
    T := (n, k) -> ifelse(k = 0, k^n, binomial(n, k)^2 * k! / (n - k + 1)):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, 0] := Boole[n == 0]; T[n_, k_] := Binomial[n, k]^2 * k!/(n - k + 1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jan 09 2022 *)

Formula

T(n, k) = binomial(n, k)^2 * k! / (n - k + 1) if k >= 1.

A082426 a(n) = floor(n*n!/2 + 1).

Original entry on oeis.org

1, 3, 10, 49, 301, 2161, 17641, 161281, 1632961, 18144001, 219542401, 2874009601, 40475635201, 610248038401, 9807557760001, 167382319104001, 3023343138816001, 57621363351552001, 1155628453883904001, 24329020081766400001, 536454892802949120001, 12364008005553684480001
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Comments

Concatenate all the permutations of 1..n in lexicographical order. a(n) is the number of ascending runs. - David Scambler, May 26 2011

Crossrefs

Cf. A074143.

Programs

  • Maple
    seq(floor(n*n!/2 + 1), n=1..20);
  • Mathematica
    a[n_] := Floor[n*n!/2 + 1]; Array[a, 20] (* Amiram Eldar, May 09 2025 *)
  • PARI
    a(n) = (n*n!)\2 + 1; \\ Amiram Eldar, May 09 2025

Formula

a(n) = A074143(n) + 1 for n >= 2. - Georg Fischer, May 15 2024

Extensions

Definition corrected by Georg Fischer, May 15 2024
Previous Showing 11-14 of 14 results.