cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A345018 For each n, append to the sequence n^2 consecutive integers, starting from n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
Offset: 1

Views

Author

Paolo Xausa, Jun 05 2021

Keywords

Comments

Irregular triangle read by rows T(n,k) in which row n lists the integers from n to n + n^2 - 1, with n >= 1.

Examples

			Written as an irregular triangle T(n,k) the sequence begins:
  n\k|  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 ...
  ---+---------------------------------------------------------------
   1 |  1;
   2 |  2,  3,  4,  5;
   3 |  3,  4,  5,  6,  7,  8,  9, 10, 11;
   4 |  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19;
  ...
		

Crossrefs

Column 1: A000027.
Right border: A028387.
Row lengths: A000290.
Row sums: A255499.

Programs

  • Maple
    T:= n-> (t-> seq(n+i, i=0..t-1))(n^2):
    seq(T(n), n=1..6);  # Alois P. Heinz, Nov 05 2024
  • Mathematica
    Table[Range[n,n^2+n-1],{n,6}] (* Paolo Xausa, Sep 05 2023 *)
  • PARI
    row(n) = vector(n^2, k, n+k-1); \\ Michel Marcus, Jun 08 2021
    
  • Python
    from sympy import integer_nthroot
    def A345018(n): return n-1+(k:=(m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)))*(k*(3-(k<<1))+5)//6 # Chai Wah Wu, Nov 05 2024

Formula

T(n,k) = n + k - 1, with n >= 1 and 1 <= k <= n^2.

A376276 Table T(n, k) n > 0, k > 2 read by upward antidiagonals. The sequences in each column k is a triangle read by rows (blocks), where each row is a permutation of the numbers of its constituents. The length of the row number n in column k is equal to the n-th k-gonal number A086270.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 2, 3, 4, 1, 8, 5, 5, 5, 1, 7, 2, 3, 4, 5, 1, 9, 10, 6, 6, 6, 6, 1, 6, 11, 2, 3, 4, 5, 6, 1, 10, 9, 13, 7, 7, 7, 7, 7, 1, 5, 12, 12, 2, 3, 4, 5, 6, 7, 1, 16, 8, 14, 15, 8, 8, 8, 8, 8, 8, 1, 15, 13, 11, 16, 2, 3, 4, 5, 6, 7, 8, 1, 17, 7, 15, 14, 18, 9, 9, 9, 9, 9, 9, 9, 1, 14, 14, 10, 17, 17, 2, 3, 4, 5, 6, 7, 8, 9, 1, 18, 6, 16, 13, 19, 20, 10, 10, 10
Offset: 1

Views

Author

Boris Putievskiy, Sep 18 2024

Keywords

Comments

A209278 presents an algorithm for generating permutations.
The sequence is an intra-block permutation of integer positive numbers.

Examples

			Table begins:
  k =      3   4   5   6   7   8
--------------------------------------
  n = 1:   1,  1,  1,  1,  1,  1, ...
  n = 2:   3,  4,  4,  5,  5,  6, ...
  n = 3:   4,  3,  5,  4,  6,  5, ...
  n = 4:   2,  5,  3,  6,  4,  7, ...
  n = 5:   8,  2,  6,  3,  7,  4, ...
  n = 6:   7, 10,  2,  7,  3,  8, ...
  n = 7:   9, 11, 13,  2,  8,  3, ...
  n = 8:   6,  9, 12, 15,  2,  9, ...
  n = 9:  10, 12, 14, 16, 18,  2, ...
  n =10:   5,  8, 11, 14, 17, 20, ...
  n =11:  16, 13, 15, 17, 19, 21, ...
  n =12:  15, 7,  10, 13, 16, 19, ...
  n =13:  17, 14, 16, 18, 20, 22, ...
  n =14:  14,  6,  9, 12, 15, 18, ...
  n =15:  18, 23, 17, 19, 21, 23, ...
  n =16:  13, 22,  8, 11, 14, 17, ...
  n =17:  19, 24, 18, 20, 22, 24, ...
  n =18:  12, 21,  7, 10, 13, 16, ...
  n =19:  20, 25, 30, 21, 23, 25, ...
  n =20:  11, 20, 29,  9, 12, 15, ...
          ... .
For k = 3 the first 4 blocks have lengths 1,3,6 and 10.
For k = 4 the first 3 blocks have lengths 1,4, and 9.
For k = 5 the first 3 blocks have lengths 1,5, and 12.
Each block is a permutation of the numbers of its constituents.
The first 6 antidiagonals are:
  1;
  3, 1;
  4, 4, 1;
  2, 3, 4, 1;
  8, 5, 5, 5, 1;
  7, 2, 3, 4, 5, 1;
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 45.

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Module[{L,R,P,Res,result},L=Ceiling[Max[x/.NSolve[x^3*(k-2)+3*x^2-x*(k-5)-6*n==0,x,Reals]]];
    R=n-(((L-1)^3)*(k-2)+3*(L-1)^2-(L-1)*(k-5))/6;P=Which[OddQ[R]&&OddQ[k*L*(L-1)/2-L^2+2*L],((k*L*(L-1)/2-L^2+2*L+1-R)+1)/2,OddQ[R]&&EvenQ[k*L*(L-1)/2-L^2+2*L],(R+k*L*(L-1)/2-L^2+2*L+1)/2,EvenQ[R]&&OddQ[k*L*(L-1)/2-L^2+2*L],Ceiling[(k*L*(L-1)/2-L^2+2*L+1)/2]+R/2,EvenQ[R]&&EvenQ[k*L*(L-1)/2-L^2+2*L],Ceiling[(k*L*(L-1)/2-L^2+2*L+1)/2]-R/2];
    Res=P+((L-1)^3*(k-2)+3*(L-1)^2-(L-1)*(k-5))/6;result=Res;result]
    Nmax=6;Table[T[n,k],{n,1,Nmax},{k,3,Nmax+2}]

Formula

T(n,k) = P(n,k) + ((L(n,k)-1)^3*(k-2)+3*(L(n,k)-1)^2-(L(n,k)-1)*(k-5))/6, where L(n,k) = ceiling(x(n,k)), x(n,k) is largest real root of the equation x^3*(k - 2) + 3*x^2 - x*(k - 5) - 6*n = 0. R(n,k) = n - ((L(n,k) - 1)^3*(k-2)+3*(L(n,k)-1)^2-(L(n,k)-1)*(k-5))/6. P(n,k) = ((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 2 - R(n,k)) / 2 if R is odd and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is odd, P(n,k) = (R(n,k) + (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2 if R is odd and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is even, P(n,k) = ceiling(((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2) + (R(n,k) / 2) if R is even and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is odd, P(n,k) = ceiling(((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2) - (R(n,k) / 2) if R is even and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is even.
T(1,n) = A000012(n). T(2,n) = A004526(n+7). T(3,n) = A028242(n+6). T(4,n) = A084964(n+5). T(n-2,n) = A000027(n) for n > 3. L(n,3) = A360010(n). L(n,4) = A074279(n).

A377721 Numbers that are not of the form k(k+1)(2k+1)/6 + k.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Chai Wah Wu, Nov 04 2024

Keywords

Comments

Complement of A145066. Numbers that are not of the form A000330(k)+k.

Crossrefs

Programs

  • Python
    from sympy import integer_nthroot
    def A377721(n): return n+(m:=integer_nthroot(3*n,3)[0])-(6*n<=m*(m+1)*((m<<1)+1))

Formula

a(n) = n+m if n > m(m+1)(2m+1)/6 and a(n) = n+m-1 otherwise where m = floor((3n)^(1/3)).
a(n) = A074279(n)+n-1.

A377722 n appears n^4 times.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Chai Wah Wu, Nov 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A377722[n_] := # + Boole[n > #*(# + 1)*(2*# + 1)*(3*#^2 + 3*# - 1)/30] & [Floor[(5*n)^(1/5)]];
    Array[A377722, 354] (* or *)
    Flatten[Table[k, {k, 4}, {k^4}]] (* Paolo Xausa, Nov 05 2024 *)
  • Python
    from sympy import integer_nthroot
    def A377722(n): return (m:=integer_nthroot(5*n,5)[0])+(30*n>m*(m+1)*((m<<1)+1)*(3*m*(m+1)-1))

Formula

a(n) = m+1 if n>m(m+1)(2m+1)(3m^2+3m-1)/30 and a(n) = m otherwise where m = floor((5n)^(1/5)).
For a sequence a_k(n) where n appears n^(k-1) times, a_k(n) = m+1 if n > Sum_{i=1..m} i^(k-1) and a_k(n) = m otherwise where m = floor((kn)^(1/k)).
Previous Showing 11-14 of 14 results.